Einstein-Podolsky-Rosen (EPR) entanglement involving a pair of particles entangled in their positions and momenta is of special interest in the field of quantum information. Previously, EPR entanglement has been studied in different physical systems but in fixed coordinate spaces. Here, we demonstrate an experiment of ghost imaging and ghost interference in rotated position-momentum spaces by using position-momentum entangled photons generated from a hot atomic ensemble. By using different image objects, the measured position-momentum correlations exhibit intriguing dynamics, including gradual decrease and axis-independent EPR entanglement. The reported results on manipulating the EPR entanglement in rotating coordinate spaces hold promise in quantum communication and distant quantum image processing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scib.2019.11.011 | DOI Listing |
Phys Chem Chem Phys
January 2025
Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, USA.
Photosynthetic reaction center proteins (RCs) provide ideal model systems for studying quantum entanglement between multiple spins, a quantum mechanical phenomenon wherein the properties of the entangled particles become inherently correlated. Following light-generated sequential electron transfer, RCs generate spin-correlated radical pairs (SCRPs), also referred to as entangled spin qubit (radical) pairs (SQPs). Understanding and controlling coherence mechanisms in SCRP/SQPs is important for realizing practical uses of electron spin qubits in quantum sensing applications.
View Article and Find Full Text PDFPolymers (Basel)
September 2024
Institute of New Materials and Advanced Manufacturing, Beijing Academy of Science and Technology, Beijing 100089, China.
Sci Rep
August 2024
Vodafone Chair Mobile Communications Systems, Technische Universität Dresden, 01067, Dresden, Germany.
Entropy (Basel)
May 2024
Departamento de Física, Universidade Federal do Paraná, Curitiba 81531-980, Brazil.
The identification and physical interpretation of arbitrary quantum correlations are not always effortless. Two features that can significantly influence the dispersion of the joint observable outcomes in a quantum bipartite system composed of systems I and II are: (a) All possible pairs of observables describing the composite are equally probable upon measurement, and (b) The absence of concurrence (positive reinforcement) between any of the observables within a particular system; implying that their associated operators do not commute. The so-called EPR states are known to observe (a).
View Article and Find Full Text PDFJ Chem Phys
June 2024
Institute of Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
Nanoscale semiconductors with isolated spin impurities have been touted as promising materials for their potential use at the intersection of quantum, spin, and information technologies. Electron paramagnetic resonance (EPR) studies of spins in semiconducting carbon nanotubes have overwhelmingly focused on spins more strongly localized by sp3-type lattice defects. However, the creation of such impurities is irreversible and requires specific reactions to generate them.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!