Exploring facile strategies for high-oxidation-state metal nitride synthesis: carbonate-assisted one-step synthesis of TaN films for solar water splitting.

Sci Bull (Beijing)

Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China; College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China.

Published: November 2018

Metal nitrides are widely studied due to their outstanding physical properties, including high hardness, high thermal and chemical stability, low electrical resistivity etc. Generally, metal nitrides can be obtained from the direct reaction of metal and ammonia/nitrogen. However, some of the metal nitrides, such as TaN, cannot be synthesized by direct nitridation of metals. To achieve TaN, high-oxidation-state Ta precursors like TaO, NaTaO, TaS, KTaO, Ta(N(CH)) and TaCl have to be employed, which is a time-consuming and laborious process with the possibility of introducing undesirable impurities. Here taking TaN as an example, a facile carbonate-assisted one-step nitridation method is proposed, which enables the direct synthesis of high-oxidation-state metal nitride films from metal precursors under ammonia flow. The mechanism of the nitridation process has been studied, which carbon dioxide released from carbonates decomposition reacts with metallic Ta and assists the one-step conversion of metallic Ta to TaN. The as-prepared TaN film, after modified with NiFe layered double hydroxide, exhibits promising water splitting performance and stability. This method avoids the preoxidation process of metal precursors in high-oxidation-state metal nitride synthesis, and may facilitate the direct fabrication of other important metal nitrides besides TaN.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scib.2018.10.005DOI Listing

Publication Analysis

Top Keywords

metal nitrides
16
high-oxidation-state metal
12
metal nitride
12
metal
10
nitride synthesis
8
carbonate-assisted one-step
8
water splitting
8
nitrides tan
8
metal precursors
8
tan
7

Similar Publications

In the typical ionothermal synthesis of crystalline carbon nitride (CCN), alkali metal halides are usually used in large amounts. Here, we report a new method for synthesizing poly (heptazine imide) (PHI) using only a trace amount of NaF, which is 20 times less than the amount of NaCl typically required to achieve the PHI structure. Different from the prevailing view that salts function primarily as templates and chelating agents during polymerization, our research revealed the unique role that NaF plays in the polymerization of PHI.

View Article and Find Full Text PDF

Bacterial infections are a major global health challenge, posing severe risks to human well-being. Although numerous strategies have been developed to combat bacterial pathogens, their practical application is often hindered by operational constraints. Photocatalytic materials have emerged as promising candidates for bacterial disinfection and food preservation due to their efficiency and sustainability.

View Article and Find Full Text PDF

g-CN Modified with Metal Sulfides for Visible-Light-Driven Photocatalytic Degradation of Organic Pollutants.

Molecules

January 2025

Research Group of Environmental and Inorganic Photochemistry, Center for Natural Sciences, Faculty of Engineering, University of Pannonia, P.O. Box 158, H-8201 Veszprém, Hungary.

Graphitic carbon nitride (g-CN) proved to be a promising semiconductor for the photocatalytic degradation of various organic pollutants. However, its efficacy is limited by a fast electron hole recombination, a restricted quantity of active sites, and a modest absorption in the visible range. To overcome these limitations, g-CN-BiS and g-CN-ZnS composites were effectively produced utilizing a starch-assisted technique.

View Article and Find Full Text PDF

Metal-free materials have been proved to be promising replacements of traditional metal-based catalysts for advanced oxidation reactions. Carbon nitride was found to be able to activate HO and generate hydroxyl radicals (•OH). Nevertheless, the performance of carbon nitride is highly dependent on an external light source.

View Article and Find Full Text PDF
Article Synopsis
  • The paper examines two tool materials for machining Inconel 718, made using different sintering methods: High Pressure-High Temperature (HPHT) and Spark Plasma Sintering (SPS).
  • One material, BNT, is predominantly cubic boron nitride and showed significant changes in phase composition post-sintering; the other, AZW, maintained a similar composition throughout.
  • Both composites demonstrated high mechanical properties, with BNT displaying a higher Young's modulus and hardness than AZW, and both were effective in machining but differed in performance and cost.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!