A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High precision nuclear mass predictions towards a hundred kilo-electron-volt accuracy. | LitMetric

High precision nuclear mass predictions towards a hundred kilo-electron-volt accuracy.

Sci Bull (Beijing)

School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China; State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China; Department of Physics, University of Stellenbosch, Stellenbosch 7602, South Africa. Electronic address:

Published: June 2018

Mass is a fundamental property and an important fingerprint of atomic nucleus. It provides an extremely useful test ground for nuclear models and is crucial to understand energy generation in stars as well as the heavy elements synthesized in stellar explosions. Nuclear physicists have been attempting at developing a precise, reliable, and predictive nuclear model that is suitable for the whole nuclear chart, while this still remains a great challenge even in recent days. Here we employ the Fourier spectral analysis to examine the deviations of nuclear mass predictions to the experimental data and to present a novel way for accurate nuclear mass predictions. In this analysis, we map the mass deviations from the space of nucleon number to its conjugate space of frequency, and are able to pin down the main contributions to the model deficiencies. By using the radial basis function approach we can further isolate and quantify the sources. Taking a pedagogical mass model as an example, we examine explicitly the correlation between nuclear effective interactions and the distributions of mass deviations in the frequency domain. The method presented in this work, therefore, opens up a new way for improving the nuclear mass predictions towards a hundred kilo-electron-volt accuracy, which is argued to be the chaos-related limit for the nuclear mass predictions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scib.2018.05.009DOI Listing

Publication Analysis

Top Keywords

nuclear mass
20
mass predictions
20
nuclear
10
mass
9
predictions kilo-electron-volt
8
kilo-electron-volt accuracy
8
mass deviations
8
predictions
5
high precision
4
precision nuclear
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!