Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The graphitic-layer encapsulated iron-containing nanoparticles (G@Fe) have been proposed as a potential type of active and stable non-precious metal electrocatalysts (NPMCs) for the oxygen reduction reaction (ORR). However, the contribution of the encapsulated components to the ORR activity is still unclear compared with the well-recognized surface coordinated FeN/C structure. Using the strong complexing effect of the iron component with anions, cyanide (CN) in alkaline and thiocyanate (SCN) in acidic media, the metal containing active sites are electrochemically probed. Three representative catalysts are chosen for a comparison including the as-prepared encapsulated G@Fe, commercial Fe/N/C catalyst with iron-nitrogen coordinated surface functionalities and molecular iron phthalocyanine (FePc) containing well-defined structures and compositions. It was found that all samples showed significant shifts of half-wave potentials indicating that surface Fe coordinated sites in all cases. The G@Fe catalyst showed the weakest poisoning effect (the lowest shifts of half-wave potential) compared to the Fe/N/C and FePc catalysts in both electrolytes. These results could be explained that the encapsulated iron components influence the FeN/C and/or NC surface functionality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scib.2017.11.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!