A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electrochemical probing into the active sites of graphitic-layer encapsulated iron oxygen reduction reaction electrocatalysts. | LitMetric

The graphitic-layer encapsulated iron-containing nanoparticles (G@Fe) have been proposed as a potential type of active and stable non-precious metal electrocatalysts (NPMCs) for the oxygen reduction reaction (ORR). However, the contribution of the encapsulated components to the ORR activity is still unclear compared with the well-recognized surface coordinated FeN/C structure. Using the strong complexing effect of the iron component with anions, cyanide (CN) in alkaline and thiocyanate (SCN) in acidic media, the metal containing active sites are electrochemically probed. Three representative catalysts are chosen for a comparison including the as-prepared encapsulated G@Fe, commercial Fe/N/C catalyst with iron-nitrogen coordinated surface functionalities and molecular iron phthalocyanine (FePc) containing well-defined structures and compositions. It was found that all samples showed significant shifts of half-wave potentials indicating that surface Fe coordinated sites in all cases. The G@Fe catalyst showed the weakest poisoning effect (the lowest shifts of half-wave potential) compared to the Fe/N/C and FePc catalysts in both electrolytes. These results could be explained that the encapsulated iron components influence the FeN/C and/or NC surface functionality.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scib.2017.11.017DOI Listing

Publication Analysis

Top Keywords

active sites
8
graphitic-layer encapsulated
8
encapsulated iron
8
oxygen reduction
8
reduction reaction
8
surface coordinated
8
shifts half-wave
8
encapsulated
5
electrochemical probing
4
probing active
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!