China's government statement recently reported the plan of constructing Xiong'an New Area, which aims to phase out some extra capital functions from Beijing and to explore an innovative urban development mode with the priority in eco-environmental protection. The New Area is located in the semi-arid North China Plain (NCP) and is home to NCP's largest natural freshwater wetland, Baiyangdian Lake. A comprehensive realization of surface water dynamics would be crucial for policy-makers to outline a sustainable environment development strategy for New Area. In this study, we used a total of 245 time slices of cloud-free Landsat images to document the continuous changes of water bodies within Xiong'an City during 1984-2016 and to provide detailed evidence of water presence and persistency states and changes under the influences of climate change and human actions. Our results reveal that the New Area water body areas varied dramatically during the past 33 years, ranging from 0.44 km in April 1988 to 317.85 km in February 1989. The change of surface water area was not characterized by a monotonically decreasing tendency. The evolution processes can be divided into four sub-stages: the first extreme desiccation in mid-1980s, the wet stage with the most extensive inundation areas and strong inter-annual fluctuations from late-1988 to late 1999, another desiccation stage in early 2000s, and the overall recovering stage between 2007 and 2016. We also mapped the maximum water inundation extents and frequencies of all-season, pre-wet season (February-May) and post-wet season (September-December) for the 33 years and different sub-periods. Although there is good agreement between time series of surface water area evolution in the New Area and station-based precipitation and evaporation variations, multiple lines of evidences reviewed in previous research indicate that the degraded Baiyangdian Lake was also tightly associated with human activities from various aspects, including dam construction, groundwater extraction, agricultural irrigation, etc. We highlighted the current status of exploring the driving mechanism of surface water changes and existing problems, and then offer recommendations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scib.2018.05.002DOI Listing

Publication Analysis

Top Keywords

surface water
20
water
9
water changes
8
time series
8
baiyangdian lake
8
water area
8
area
7
long-term surface
4
changes
4
changes driving
4

Similar Publications

Nano-biochar considers a versatile and valuable sorbent to enhance plant productivity by improving soil environment and emerged as a novel solution for environmental remediation and sustainable agriculture in modern era. In this study, roles of foliar applied nanobiochar colloidal solution (NBS) on salt stressed tomato plants were investigated. For this purpose, NBS was applied (0%, 1% 3% and 5%) on two groups of plants (control 0 mM and salt stress 60 mM).

View Article and Find Full Text PDF

Immobilization of Peniophora incarnata F1 in PVA-SA-biochar matrix and its degradation performance and mechanism for erythromycin degradation.

J Environ Manage

January 2025

Changzhou Key Laboratory of Biomass Green, Safe and High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou, 213164, China; National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou, 213164, China. Electronic address:

Erythromycin is becoming one of the most common contaminants detected in surface water and wastewater, which poses a potential risk to ecological systems and human health. Until now, there is still no effective way to eliminate it. Herein, a novel and efficient erythromycin-degrading fungus Peniophora incarnata F1, capable of utilizing erythromycin as its sole source of carbon and energy, was isolated from contaminated sludge.

View Article and Find Full Text PDF

Fluorescence-enhanced detection of sulfide ions through tuning the structure-activity relationship of gold nanoclusters.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China; Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China. Electronic address:

The concentration of S is a vital environmental indicator for evaluating the quality of source water, surface water, and wastewater, and it has a significant impact on biological systems, particularly human health. Therefore, it is crucial to detect S selectively and sensitively. In this study, we developed a simple and rapid one-pot method to prepare a gold nanocluster (BSA-AuNCs) probe for fluorescence-enhanced detection of S toxemia and analyzed the morphological characteristics of BSA-AuNCs and its complex with S using various characterization techniques.

View Article and Find Full Text PDF

Ocean current modulation of the spatial distribution of microplastics in the surface sediments of the Beibu Gulf, China.

J Hazard Mater

January 2025

School of Chemistry and Environment, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China.

Microplastic pollution, a major global environmental issue, is gaining heightened attention worldwide. Marginal seas are particularly susceptible to microplastic contamination, yet data on microplastics in marine sediments remain scarce, especially in the Beibu Gulf. This study presents a large-scale investigation of microplastics in the surface sediments of the Beibu Gulf to deciphering their distribution, sources and risk to marginal seas ecosystems.

View Article and Find Full Text PDF

Migration of vanadium oxide nanoparticles in saturated porous media.

J Hazard Mater

January 2025

MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China.

Vanadium oxides nanoparticles (VO-NPs) as emerging functional materials are widely applied in high-technology industries. However, their environmental behaviors remain largely known. In this study, the migration of three common VO-NPs (VO VO, and VO) in saturated porous media has been investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!