We report the successful preparation of a purely honeycomb, graphene-like borophene, by using an Al(1 1 1) surface as the substrate and molecular beam epitaxy (MBE) growth in ultrahigh vacuum. Scanning tunneling microscopy (STM) images reveal perfect monolayer borophene with planar, non-buckled honeycomb lattice similar as graphene. Theoretical calculations show that the honeycomb borophene on Al(1 1 1) is energetically stable. Remarkably, nearly one electron charge is transferred to each boron atom from the Al(1 1 1) substrate and stabilizes the honeycomb borophene structure, in contrast to the negligible charge transfer in case of borophene/Ag(1 1 1). The existence of honeycomb 2D allotrope is important to the basic understanding of boron chemistry, and it also provides an ideal platform for fabricating boron-based materials with intriguing electronic properties such as Dirac states.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scib.2018.02.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!