Background: Heat stress negatively influences cattle welfare, health and productivity. To cope with the forecasted increases in temperature and heat waves frequency, identifying high-producing animals that are tolerant to heat is of capital importance to maintain milk production. This study, based on the joint analysis of on-farm performance and weather data, had two objectives: (1) to determine the response in production performances (milk, fat and protein yields, fat and protein contents) and udder health (somatic cell score) to temperature-humidity index (THI) variations in Montbeliarde cows, and (2) to estimate the interactions between genotype and THI, to enable the identification of the most adapted animals for facing the expected increases in temperature.
Results: Test-day records from first and second lactations from 2016 to 2020 were associated with the average THI during the three days before the test-day record. In total, 446,717 test-day records from 55,650 cows in first lactation and 457,516 test-day records from 58,229 cows in second lactation were analysed. The optimal THI was below 55 (i.e. ~ 12-13 °C) for all traits. Individual responses to THI were estimated by random regression models, which also included individual responses to days in milk. Regardless of the stage of lactation, genetic correlations along the THI gradient were above 0.80, which suggests that genotype-by-THI interactions were weak for production and udder health traits. Nevertheless, a variability in the individual slope of decay could be highlighted at high THI. The genetic correlation between production level at moderate THI and the slope at high THI was negative, while for somatic cell score, it was positive, indicating that heat stress amplifies the susceptibility to mastitis.
Conclusions: The optimal THI for French Montbeliarde cows is below 55 for production and udder health traits. Genetic-by-THI interactions are weak in French Montbeliarde cows for production and udder health traits, but not all animals react in the same way to high temperatures. Even if there is little room for improvement, using a heat tolerance index in cattle selection would be relevant to anticipate the expected increases in temperature. Further investigations are needed to interpret this variability on production traits. However, the current selection for mastitis resistance seems appropriate to adapt cattle to rising temperatures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9854084 | PMC |
http://dx.doi.org/10.1186/s12711-023-00779-1 | DOI Listing |
Microb Pathog
January 2025
College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Animal Disease Prevention and Control Center of Ningxia Hui Autonomous Region, Yinchuan 750001, Ningxia, P. R. China. Electronic address:
Mastitis, generally caused by pathogenic microorganisms, is a serious disease in dairy farming. Staphylococcus aureus (S. aureus) is one of the main pathogens that induces mastitis in dairy cows.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
Goats are essential to the dairy industry in Shaanxi, China, with udder traits playing a critical role in determining milk production and economic value for breeding programs. However, the direct measurement of these traits in dairy goats is challenging and resource-intensive. This study leveraged genotyping imputation to explore the genetic parameters and architecture of udder traits and assess the efficiency of genomic prediction methods.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
Background: Lately, significant attention has been drawn towards the potential efficacy of cholera toxin (CT)-an exotoxin produced by the small intestine pathogenic bacterium Vibrio cholera-in modulating cancer-promoting events. In a recent study, we demonstrated that early-life oral administration of non-pathogenic doses of CT in mice suppressed chemically-induced carcinogenesis in tissues distantly located from the gut. In the mammary gland, CT pretreatment was shown to reduce tumor multiplicity, increase apoptosis and alter the expression of several cancer-related molecules.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Lodi, 26900, Italy.
Intramammary dry-off treatment is widely considered an effective method for preventing and curing intramammary infection (IMI) in lactating cows; however, it is not commonly used in small ruminants like goats. Therefore, this study was designed to evaluate the effect of an approved cefazolin-based intramammary treatment on the milk microbiota of Alpine dairy goats during the dry and early lactation periods. Sixty goats were randomly selected based on bacteriological results and randomly allocated into the control group (CG) or the treatment group (TG).
View Article and Find Full Text PDFJ Dairy Sci
January 2025
Department of Economics, Swedish University of Agricultural Sciences, Uppsala, Sweden.
Clinical mastitis, a prevalent production disease in the dairy industry, causes significant pain and swelling in dairy cows' udders. While previous research highlights a symbiotic relationship between humans and animals, particularly in terms of health, this study investigates how animal health, specifically clinical mastitis, influences farmers' well-being. Acknowledging farmers' pivotal role in mitigating animal health problems, we examined the human-animal relationship by exploring how dairy cow health relates to the psychological well-being of dairy farmers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!