Nanofibrillar biochar from industrial waste as hosting network for transition metal dichalcogenides. Novel sustainable 1D/2D nanocomposites for electrochemical sensing.

Chemosphere

Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, 64100, Teramo, Italy. Electronic address:

Published: March 2023

Industrial wastes have become elective sustainable sources to obtain materials for electronic/electroanalytical purposes; on the other hand, easy and green strategies to include semiconductor 2D graphene-like materials in conductive networks are highly required. In this work, 1D/2D nanocomposites (NCs) based on nanofibrillar biochar (BH) from paper industry waste and transition metal dichalcogenides (TMDs: MoS, WS, MoSe, and WSe), were prepared in water via liquid phase exfoliation (LPE) using sodium cholate as bioderived surfactant. The TMD amount in the NCs has been carefully optimized, searching for the best compromise between electron transfer ability and electroanalytical performances. Four different water-dispersed BH-TMD NCs have been selected and comprehensively studied from the electrochemical point of view and morphologically characterized. The BH-TMDs potentiality have been demonstrated in model solutions and real samples towards different analytes of biological and agri-food interest. The most performing NCs have been selected and used for the simultaneous determination of the neurotransmitters dopamine (DP) and serotonin (SR), and the flavonoids quercetin (QR) and rutin (RT), obtaining good linearity (R ≥ 0.9956) with limits of detection ranging from 10 to 200 nM. Reproducible quantitative recovery values (90-112%, RSD ≤6%, n = 3) were obtained analyzing simultaneously DP and SR in synthetic biological fluid and drugs, and QR and RT in food supplements, proving the usability of the proposed materials for real analyses. This work proves that BH-nanofibers act as a sustainable conductive hosting network for 2D-TMDs, allowing full exploit their electroanalytical potential. The proposed BH-TMD NCs represent a sustainable, affordable, and captivating opportunity for the electrochemical and (bio)sensoristic field.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.137884DOI Listing

Publication Analysis

Top Keywords

nanofibrillar biochar
8
hosting network
8
transition metal
8
metal dichalcogenides
8
1d/2d nanocomposites
8
bh-tmd ncs
8
ncs selected
8
ncs
5
biochar industrial
4
industrial waste
4

Similar Publications

Nanofibrillar biochar from industrial waste as hosting network for transition metal dichalcogenides. Novel sustainable 1D/2D nanocomposites for electrochemical sensing.

Chemosphere

March 2023

Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, 64100, Teramo, Italy. Electronic address:

Industrial wastes have become elective sustainable sources to obtain materials for electronic/electroanalytical purposes; on the other hand, easy and green strategies to include semiconductor 2D graphene-like materials in conductive networks are highly required. In this work, 1D/2D nanocomposites (NCs) based on nanofibrillar biochar (BH) from paper industry waste and transition metal dichalcogenides (TMDs: MoS, WS, MoSe, and WSe), were prepared in water via liquid phase exfoliation (LPE) using sodium cholate as bioderived surfactant. The TMD amount in the NCs has been carefully optimized, searching for the best compromise between electron transfer ability and electroanalytical performances.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!