A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Incorporation of sodium alginate functionalized halloysite nanofillers into poly (vinyl alcohol) to study mechanical, cyto/heme compatibility and wound healing application. | LitMetric

Incorporation of sodium alginate functionalized halloysite nanofillers into poly (vinyl alcohol) to study mechanical, cyto/heme compatibility and wound healing application.

Int J Biol Macromol

Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri, 574199 D.K., Karnataka, India. Electronic address:

Published: March 2023

In this study, the Halloysite nanotubes (HNTs) are surface-functionalized with sodium alginate (Sod.alg) and poly (vinyl alcohol) (PVA) were employed to generate nanocomposite films (Sod.alg-rHNT/PVA). These nanocomposite films were made via the solution casting technique. FE-SEM data verified sod.alg-rHNT dispersion into the PVA matrix. The modifications were confirmed from FTIR, TGA and PXRD techniques. In the mechanical studies of synthesized nanocomposite films, the films showed a considerable increase in the tensile strength and Young's modulus values. The nanocomposite film's ability to induce cell proliferation and migration was investigated using murine fibroblast (NIH3T3) cells. The films increased cellular proliferation (128 ± 1.07 %) compared to the neat PVA. Cell adhesion tests showed cytocompliant films. In the scratch assay, the 5 wt% film elicited wound closure at a faster rate (91.53 ± 1.04 %). Films were compatible with human blood cells. Therefore the prepared nanocomposite films can be used as promising wound healers after pre-clinical and clinical testing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.123278DOI Listing

Publication Analysis

Top Keywords

nanocomposite films
16
sodium alginate
8
poly vinyl
8
vinyl alcohol
8
films
8
nanocomposite
5
incorporation sodium
4
alginate functionalized
4
functionalized halloysite
4
halloysite nanofillers
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!