THZ1, a CDK7 inhibitor, has potent antitumor effects in several cancers; however, its role in Acute myeloid leukemia (AML) is unclear. We explored the effects and potential mechanisms of THZ1, alone and in combination with azacitidine (AZA), in AML cells and xenograft models. THZ1 decreased cell viability, induced apoptosis in a dose and time-dependent manner, induced G0/G1 cell cycle arrest, decreased phosphorylated CDK1 and CDK2 expression, and inhibited RNA Pol II phosphorylation at multiple serine sites. The combination of AZA and THZ1 exhibited synergistic antileukemic effects in AML cell lines and primary cells with MCL1 and c-MYC downregulation. Moreover, the combination therapy significantly decreased tumor burden and prolonged animal survival in xenograft mice models. Our data demonstrate that CDK7 inhibition induces the apoptosis of AML cells and exerts a synergistic antileukemia effect with AZA and , which supports future exploration of this combination in clinical studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10428194.2023.2169045 | DOI Listing |
Adv Sci (Weinh)
December 2024
Department of Radiation Oncology, Fudan University Shanghai Cancer Center, No.270 Dong'an Road, Shanghai, 200032, China.
Inhibitors targeting cyclin-dependent kinases 4 and 6 (CDK4/6) to block cell cycle progression have been effective in treating hormone receptor-positive breast cancer, but triple-negative breast cancer (TNBC) remains largely resistant, limiting their clinical applicability. The study reveals that transcription regulator cyclin-dependent kinase7 (CDK7) is a promising target to circumvent TNBC's inherent resistance to CDK4/6 inhibitors. Combining CDK4/6 and CDK7 inhibitors significantly enhances therapeutic effectiveness, leading to a marked decrease in cholesterol biosynthesis within cells.
View Article and Find Full Text PDFAnticancer Drugs
January 2025
Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX.
Triple-negative breast cancer (TNBC) is a highly invasive breast cancer subtype that is challenging to treat due to inherent heterogeneity and absence of estrogen, progesterone, and human epidermal growth factor 2 receptors. Kinase signaling networks drive cancer growth and development, and kinase inhibitors are promising anti-cancer strategies in diverse cancer subtypes. Kinase inhibitor screens are an efficient, valuable means of identifying compounds that suppress cancer cell growth in vitro , facilitating the identification of kinase vulnerabilities to target therapeutically.
View Article and Find Full Text PDFMolecules
November 2024
Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland.
Melanoma occurs in various forms and body areas, not only in the cutis, but also in mucous membranes and the uvea. Rarer subtypes of that cancer differ in genomic aberrations, which cause their minor sensibility to regular cutaneous melanoma therapies. Therefore, it is essential to discover new strategies for treating rare forms of melanoma.
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer. Among TNBC subtypes, the luminal androgen receptor (LAR) subtype expresses high levels of androgen receptor (AR) and generally responds poorly to neoadjuvant chemotherapy. AR has been reported as a promising therapeutic target for the LAR TNBC subtype.
View Article and Find Full Text PDFSci Transl Med
November 2024
Research Institute, Hospital for Special Surgery, New York, NY 10021, USA.
Macrophages are key drivers of inflammation and tissue damage in autoimmune diseases including rheumatoid arthritis. The rate-limiting step for transcription of more than 70% of inducible genes in macrophages is RNA polymerase II (Pol II) promoter-proximal pause release; however, the specific role of Pol II early elongation control in inflammation, and whether it can be modulated therapeutically, is unknown. Genetic ablation of a pause-stabilizing negative elongation factor (NELF) in macrophages did not affect baseline Pol II occupancy but enhanced the transcriptional response of paused anti-inflammatory genes to lipopolysaccharide followed by secondary attenuation of inflammatory signaling in vitro and in the K/BxN serum transfer mouse model of arthritis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!