MitoNet: A generalizable model for segmentation of individual mitochondria within electron microscopy datasets.

Cell Syst

National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA. Electronic address:

Published: January 2023

AI Article Synopsis

  • Volume electron microscopy is a useful technique for studying the physical connections in biological systems.
  • In a recent article, researchers Conrad and Narayan introduce "MitoNet," a new method to assess individual mitochondria.
  • This model addresses a key challenge in volume electron microscopy, making it more effective for analyzing mitochondrial data in various studies.

Article Abstract

Volume electron microscopy provides a powerful approach to investigating physical connectivity within biological systems. In an article in this issue of Cell Systems, Conrad and Narayan overcome a major hurdle in volume electron microscopy by developing "MitoNet," a broadly applicable model for labeling individual mitochondria across volume electron microscopy datasets.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cels.2022.12.004DOI Listing

Publication Analysis

Top Keywords

electron microscopy
16
volume electron
12
individual mitochondria
8
microscopy datasets
8
mitonet generalizable
4
generalizable model
4
model segmentation
4
segmentation individual
4
electron
4
mitochondria electron
4

Similar Publications

Red blood cells (RBCs) serve as natural transporters and can be modified to enhance the pharmacokinetics and pharmacodynamics of a protein cargo. Affinity targeting of Factor IX (FIX) to the RBC membrane is a promising approach to improve the (pro)enzyme's pharmacokinetics. For RBC targeting, purified human FIX was conjugated to the anti-mouse glycophorin A monoclonal antibody Ter119.

View Article and Find Full Text PDF

Carbonate fluorapatite coatings on phillipsite represent a significant sink of phosphorus in abyssal plains of the western Pacific Ocean.

Proc Natl Acad Sci U S A

February 2025

Department of Earth System Sciences, Center for Earth System Research and Sustainability, University of Hamburg, Hamburg 20146, Germany.

As an essential micronutrient, phosphorus plays a key role in oceanic biogeochemistry, with its cycling intimately connected to the global carbon cycle and climate change. Authigenic carbonate fluorapatite (CFA) has been suggested to represent a significant phosphorus sink in the deep ocean, but its formation mechanisms in oceanic low-productivity settings remain poorly constrained. Applying X-ray absorption near edge structure, transmission electron microscopy, and laser ablation inductively coupled plasma mass spectrometer analyses, we report a unique mineral assemblage where CFA crystals coat phillipsite in abyssal sediments of the East Mariana Basin and the Philippine Sea.

View Article and Find Full Text PDF

Whipworms (Trichuris spp) are ubiquitous parasites of humans and domestic and wild mammals that cause chronic disease, considerably impacting human and animal health. Egg hatching is a critical phase in the whipworm life cycle that marks the initiation of infection, with newly hatched larvae rapidly migrating to and invading host intestinal epithelial cells. Hatching is triggered by the host microbiota; however, the physical and chemical interactions between bacteria and whipworm eggs, as well as the bacterial and larval responses that result in the disintegration of the polar plug and larval eclosion, are not completely understood.

View Article and Find Full Text PDF

An obligately anaerobic, spore-forming sulphate-reducing bacterium, strain SB140, was isolated from a long-term continuous enrichment culture that was inoculated with peat soil from an acidic fen. Cells were immotile, slightly curved rods that stained Gram-negative. The optimum temperature for growth was 28 °C.

View Article and Find Full Text PDF

Nowadays, intracerebral hemorrhage (ICH) is the main cause of death and disability, and motor impairment is a common sequel to ICH. Electroacupuncture (EA) has been widely used for functional recovery after ICH. However, its role and associated regulatory mechanisms in rehabilitation after ICH remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!