Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Tau protein is a promising biomarker for early diagnosis of Alzheimer's disease. Therefore, there is an urgent need to develop a simple and effective method for its detection. To this end, an innovative sensing device was developed using a carbon screen-printed electrode (C-SPE) decorated with graphene oxide/Prussian Blue nanocubes (GO/PBNCs) for the selective and sensitive determination of Tau-441 protein. The molecular imprinting polymer (MIP) was built on the GO/PBNCs/C-SPE by electropolymerizing 3-aminophenol (3-AMP) in the presence of the target protein using chronoamperometry, and the template was subsequently removed from the polymer matrix with oxalic acid. In parallel, a non-imprinted material (NIP) was also prepared in the absence of the target for comparison purposes. Scanning electron microscopy and transmission electron microscopy, were used to study the morphology of the modified electrode and electrochemical techniques were used to monitor the stepwise assembly of the sensor. Under optimized conditions, the sensing platform exhibited a linear range within 1.09 and 2.18 nmol/L and a detection limit of 0.01 pmol/L in spiked phosphate buffer solution (PBS). The MIP sensor showed minimal interference with uric acid and bovine albumin. The simplicity of production, affordable cost and promising performance make this sensor a potential strategic sensing platform for the detection of chemical and biological molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jpba.2023.115251 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!