Pulmonary fibrosis (PF) is a chronic and irreversible pulmonary disease, and can lead to decreased lung function, respiratory failure and even death. The pathogenesis research and treatment strategy of PF significantly lag behind the medical progress and clinical needs. The treatment of this disease remains a thorny clinical problem, and the effective therapeutic drugs are still limited. Monomeric compounds from traditional Chinese medicine own various biological activities and high safety. They play a broad part in treating diseases and is also a candidate drug for preventing and treating PF. In this paper, we reviewed the mechanism of action and potential value of various anti-PF monomeric compounds from traditional Chinese medicine. These monomeric compounds can attenuate inflammatory response, oxidative stress, epithelial mesenchymal transformation and other processes of lung through many signaling pathways, and inhibit the activation and differentiation of fibroblasts, thus contributing to the treatment of PF. This review can provide new ideas for the development of anti-PF drugs in high efficiency with low toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2023.114226 | DOI Listing |
Magn Reson Chem
January 2025
A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia.
The complete H and C NMR assignments of a trimeric vindoline together with its individual components, dimeric vindolicine and monomeric vindoline, are performed based on a thorough analysis of the ROESY, COSY, HSQC, and HMBC spectra in combination with the state-of-the-art quantum-chemical calculations. A spatial structure of vindoline trimer is determined by means of computational conformational analysis in combination with the probability distribution map of its basic conformers. On the example of monoterpene indole alkaloid, the trimer vindoline, the present study reveals the power of modern computational NMR to perform identification and stereochemical studies of large natural compounds with some limitations, which may arise in the quantum chemical computing workflow.
View Article and Find Full Text PDFBioorg Chem
December 2024
School of Marine Sciences, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China. Electronic address:
J Inorg Biochem
December 2024
Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India. Electronic address:
Three stable oxidovanadium(IV) [VOL] complexes (1-3) were synthesized through the incorporation of unsymmetrical salen ligands (HL). All the ligands are synthesized, and their vanadium compounds were thoroughly characterized by CHNS analysis, various spectroscopy methods (IR, UV-Vis, NMR spectroscopy), and HR-ESI-MS. The structures of 1-3 were validated through the single-crystal X-ray analysis.
View Article and Find Full Text PDFPlant Cell Environ
December 2024
Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky, USA.
The evolutionary arms race between plants and insects has led to key adaptive innovations that drive diversification. Alkaloids are well-documented anti-herbivory compounds in plant chemical defences, but how these specialized metabolites are allocated to cope with both biotic and abiotic stresses concomitantly is largely unknown. To examine how plants prioritize their metabolic resources responding to herbivory and cold, we integrated dietary toxicity bioassay in insects with co-expression analysis, hierarchical clustering, promoter assay, and protein-protein interaction in plants.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
Limited by the two mutually exclusive physicochemical processes of separation and recombination of photogenerated carriers, achieving photoluminescence and photocatalysis simultaneously is extremely challenging but essential for ever-growing complex issues and specialized scenarios. Here we proposed a biomimetic isolation-conduction strategy induced by an arene-perfluoroarene (A-P) interaction for enabling photoluminescence and photocatalytic hydrogen evolution reaction (HER) activity in the co-assembly of aromatic monomers and octafluoronapthalene (OFN). Inspired by the isolation-conduction effect of periodic isolation of myelin sheaths on the axons of vertebrate nerve fibers by node of Ranvier, we use OFN as a molecular isolator embedded in the aromatic monomers array to block the singlet-to-triplet pathway, while the enlarged intermolecular dipoles resulting from the A-P interactions facilitate the conduction of photogenerated carriers in the isolated regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!