Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The sustainable and green treatment of landfill leachate (LL), produced by municipal solid waste, represents one of the most relevant challenges in the integrated waste management systems. Accordingly, in this work a green solution was investigated by coupling an innovative hybrid constructed wetland (HCW) to a solar photo-Fenton (SPF) process. A multiple layers HCW pilot plant including different medium substrates (sand, solid compost and carriers) and plant species (Phragmites australis, Arundo donax and A. plinii) was designed. The HCW was functionalised with compost tea solution to simultaneously provide high nutrient content for plants and increase the microorganism biodiversity. Process efficiency was investigated using different real LLs (young and mature) in terms of chemical oxygen demand (COD), nitrogen compounds, chlorides and metals. Removals in the range 75-95% were observed for all the parameters after ten days of leachate recirculation in the pilot plant. Subsequently, the SPF process was carried out in a raceway pond reactor (RPR) as polishing step, significantly improving COD removal (further 49%). HCW combined with SPF in RPR would allow to meet the corresponding limits according to the final use/fate of the effluent by modulating the main parameters of the process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2022.117211 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!