The effect of orexin on the hypoxic ventilatory response of female rats is greatest in the active phase during diestrus.

J Appl Physiol (1985)

Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States.

Published: March 2023

We recently showed that in male rats, orexin contributes to the hypoxic ventilatory response (HVR), with a stronger effect in the active phase. The effect of orexin on the HVR in females has not been investigated. As estrogen can inhibit orexin neurons, here we hypothesized that orexin neurons are activated by hypoxia and facilitate the HVR only in diestrus, when estrogen is low. We exposed female rats ( = 10) to near-isocapnic hypoxia ([Formula: see text] from 0.21 to 0.09) over ∼5 min, after vehicle and again after suvorexant (a dual OxR antagonist; 20 mg/kg ip), with ventilation measured using whole body plethysmography. Each rat was tested in proestrus or estrus (p/estrus), and again in diestrus, during both inactive and active phases. We also performed immunohistochemistry (IHC) to determine the proportion of orexin neurons activated by acute hypoxia during diestrus ( = 6) or proestrus/estrus ( = 6) in the active phase. In the inactive phase, the HVR was unaffected by OxR blockade, irrespective of estrus stage. In the active phase, the effect of OxR blockade depended on stage: the slope of the HVR was significantly reduced by OxR blockade only during diestrus. IHC revealed that hypoxia activated more orexin neurons during diestrus compared with p/estrus. We conclude that in females, orexin neurons are activated by hypoxia and contribute to the HVR only in diestrus when estrogen levels are low. Stage of the estrus cycle should be considered when examining the physiological function of orexin neurons in females. We previously showed that orexin facilitates the hypoxic ventilatory response (HVR) of adult male rats during the active phase. Others have shown that estrogen inhibits orexin neurons. Here we show that orexin neurons are activated by hypoxia and facilitate the HVR of adult female rats during the active phase, but only in diestrus. These data suggest that orexin neurons facilitate the HVR in females when they are free from the inhibitory effects of estrogen.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10010922PMC
http://dx.doi.org/10.1152/japplphysiol.00661.2022DOI Listing

Publication Analysis

Top Keywords

orexin neurons
36
active phase
24
neurons activated
16
orexin
13
hypoxic ventilatory
12
ventilatory response
12
female rats
12
activated hypoxia
12
facilitate hvr
12
oxr blockade
12

Similar Publications

Background: Orexin neuropeptides help regulate sleep/wake states, respiration, and pain. However, their potential role in regulating breathing, particularly in perioperative settings, is not well understood. TAK-925 (danavorexton), a novel, orexin receptor 2-selective agonist, directly activates neurons associated with respiratory control in the brain and improves respiratory parameters in rodents undergoing fentanyl-induced sedation.

View Article and Find Full Text PDF

The Role and Mechanisms of the Hypocretin System in Zebrafish ().

Int J Mol Sci

December 2024

A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia.

Sleep is the most important physiological function of all animals studied to date. Sleep disorders include narcolepsy, which is characterized by excessive daytime sleepiness, disruption of night sleep, and muscle weakness-cataplexy. Narcolepsy is known to be caused by the degeneration of orexin-synthesizing neurons (hypocretin (HCRT) neurons or orexin neurons) in the hypothalamus.

View Article and Find Full Text PDF

Transcranial pulsed current stimulation alleviates neuronal pyroptosis and neurological dysfunction following traumatic brain injury via the orexin-A/NLRP3 pathway.

Neuropeptides

January 2025

Affiliated Rehabilitation Hospital, Jiang Xi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China; Rehabilitation Medicine Clinical Research Center of Jiangxi Province, 330003, Jiangxi, China; Key Laboratory of Jiangxi Provincial Health Commission for DOC Rehabilitation, 330003, Jiangxi, China. Electronic address:

Traumatic brain injury (TBI) is a life-threatening condition with high incidence and mortality rates. The current pharmacological interventions for TBI exhibit limited efficacy, underscoring the necessity to explore novel and effective therapeutic approaches to ameliorate its impact. Previous studies have indicated that transcranial pulsed current stimulation (tPCS) can improve neurofunctional deficits in patients by modulating brain neuroplasticity.

View Article and Find Full Text PDF

Objective: The ventral tegmental area (VTA), a pivotal hub in the brain's reward circuitry, receives inputs from the lateral hypothalamic area (LHA). However, it remains unclear whether melanin-concentrating hormone (MCH) and orexin-A (OX-A) neurons in the LHA exert individual or cooperative influence on palatable food consumption in the VTA. This study aims to investigate the modulatory role of MCH and OX-A in hedonic feeding within the VTA of high-fat diet (HFD) mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!