Biomaterial-based implants hold great potential for postoperative cancer treatment due to the enhanced drug dosage at the disease site and decreased systemic toxicity. However, the elaborate design of implants to avoid complicated chemical modification and burst release remains challenging. Herein, we report a three-dimensional (3D) printed hydrogel scaffold to enable sustained release of drugs for postoperative synergistic cancer therapy. The hydrogel scaffold is composed of Pluronic F127 and sodium alginate (SA) as well as doxorubicin (DOX) and copper ions (F127-SA/Cu-DOX hydrogel scaffold). Benefiting from the coordination of Cu(II) with both SA and DOX, burst release of DOX can be overcome, and prolonged release time can be achieved. The therapeutic efficiency can be adjusted by altering the amount of DOX and Cu(II) in the scaffolds. Moreover, apoptosis and ferroptosis of cancer cells can be induced through the combination of chemotherapy and chemodynamic therapy. In addition, DOX supplies excess hydrogen peroxide to enhance the efficiency of Cu-based chemodynamic therapy. When implanted in the resection site, hydrogel scaffolds effectively inhibit tumor growth. Overall, this study may offer a new strategy for fabricating local implants with synergistic therapeutic performance for preventing postoperative cancer recurrence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c18494 | DOI Listing |
Bioact Mater
April 2025
School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China.
After tooth extraction, alveolar bone absorbs unevenly, leading to soft tissue collapse, which hinders full regeneration. Bone loss makes it harder to do dental implants and repairs. Inspired by the biological architecture of bone, a deformable SIS/HA (Small intestinal submucosa/Hydroxyapatite) composite hydrogel coaxial scaffold was designed to maintain bone volume in the socket.
View Article and Find Full Text PDFBioact Mater
April 2025
Laboratory of Experimental Neuroregeneration, Spinal Cord Injury Center, Heidelberg University Hospital, 69118, Heidelberg, Germany.
Biomaterial scaffold engineering presents great potential in promoting axonal regrowth after spinal cord injury (SCI), yet persistent challenges remain, including the surrounding host foreign body reaction and improper host-implant integration. Recent advances in mechanobiology spark interest in optimizing the mechanical properties of biomaterial scaffolds to alleviate the foreign body reaction and facilitate seamless integration. The impact of scaffold stiffness on injured spinal cords has not been thoroughly investigated.
View Article and Find Full Text PDFMater Today Bio
February 2025
Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
Intervertebral disc (IVD) degeneration represents a significant cause of chronic back pain and disability, with a substantial impact on the quality of life. Conventional therapeutic modalities frequently address the symptoms rather than the underlying etiology, underscoring the necessity for regenerative therapies that restore disc function. Polysaccharide-based materials, such as hyaluronic acid, alginate, chitosan, and chondroitin sulfate, have emerged as promising candidates for intervertebral disc degeneration (IVDD) therapy due to their biocompatibility, biodegradability, and ability to mimic the native extracellular matrix (ECM) of the nucleus pulposus (NP).
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
School of Biomedical Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada.
Prevalence of osteoarthritis has been increasing in aging populations, which has necessitated the use of advanced biomedical treatments. These involve grafts or delivering drug molecules entrapped in scaffolds. However, such treatments often show suboptimal therapeutic effects due to poor half-life and off-target effects of drug molecules.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China. Electronic address:
Promoting angiogenesis, alleviating oxidative stress injury and inflammation response are crucial for bone healing. Herein, the deferoxamine (DFO)-loaded gelatin methacryloyl (GelMA) hydrogel coating (GelMA-DFO) was constructed on the 3D-printed poly(Glycolide-Co-Caprolactone)-hydroxyapatite (PGCL-HAP) scaffold. After the hydrogel coating was established, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM) and water contact angle measurement were employed to evaluate the characteristic and the biological properties were assessed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!