The destruction of the ecological environment caused by human activity and modern industrial development is so severe that the water environment has become seriously polluted. Therefore, the exploration of high-efficiency absorbents has become one of the hot topics to solve this issue. Herein, a porous metal-organic framework [Cu(L)]·2.5HO·0.5DMF (, DMF = ,-dimethylformamide) was successfully constructed using a rigid -heterocyclic 5-(4-(1,3,4-triazol-1-yl)phenyl)isophthalic acid (HL) ligand. In particular, its structure includes the classical paddle-wheel-shaped secondary building units and two 1D channels with diameters of 7.2 and 3.2 Å, respectively. Complex shows great sorption performance for methylene blue (MB) with a maximum capacity of 589 mg·g. The various influence factors, including the time, dye concentration, adsorbent dosage, and the pH of the solution, are investigated respectively. Also, the adsorption process is more in line with the first-order kinetics and the Langmuir isothermal adsorption model. The strong electrostatic force and intermolecular forces are primarily responsible for the remarkable adsorption ability of MB.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.2c04350 | DOI Listing |
Environ Monit Assess
January 2025
Department of Environmental Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq.
RSC Adv
January 2025
College of Construction and Ecology, Shantou Polytechnic Shantou 515078 Guangdong China
This research focuses on the development of a novel Ru-doped TiO/grapefruit peel biochar/FeO (Ru-TiO/PC/FeO) composite catalyst, which exhibits exceptional photocatalytic efficacy under simulated solar light irradiation. The catalyst is highly effective in the degradation of rhodamine B (RhB), methylene blue (MB), methyl orange (MO), as well as actual industrial dye wastewater (IDW), and can be recovered magnetically for multiple reuse cycles. Significantly, the PCTRF-100 sample exhibited degradation efficiencies of 99.
View Article and Find Full Text PDFHeliyon
January 2025
Graduate School of International Agricultural Technology, Department of Green Eco System, Engineering, Seoul National University, Pyeongchang, 25354, Gangwon-do, South Korea.
Organic contaminants from wastewater toxicity to the environment has increased during the last few decades and, therefore, there is an urgent need to decontaminate wastewater prior to disposal. This study aimed to create a high surface area catalytic activated carbon (AC) under same carbonization conditions for phenol and methylene blue (organic wastewater) decontamination. husk (MH), sesame husk (SH), and baobab husk (BH) were used to prepare activated carbon for the removal of methylene blue (MB) and phenol (Ph).
View Article and Find Full Text PDFSoft Matter
January 2025
Faculty of Science and Letters, Department of Chemistry, Soft Materials Research Laboratory, Istanbul Technical University, Istanbul, Maslak, 34469, Turkey.
A series of anionic poly(acrylamide--sodium acrylate)/poly(ethylene glycol), PAN/PEG, hybrids were conveniently synthesized free radical aqueous polymerization by integrating bentonite, kaolin, mica, graphene and silica, following a simple and eco-friendly crosslinking methodology. A comparative perspective was presented on how integrated nanofillers affect the physicochemical properties of hybrid gels depending on the differences in their structures. Among the five types of nanofillers, bentonite-integrated hybrid gel had the highest water absorbency, while graphene-integrated gel had the lowest.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!