Nicotinamide Adenosine Dinucleotide Phosphate Oxidase-Mediated Signaling in Cardiac Remodeling.

Antioxid Redox Signal

British Heart Foundation Centre of Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, United Kingdom.

Published: February 2023

Reactive oxygen species (ROS) play a key role in the pathogenesis of cardiac remodeling and the subsequent progression to heart failure (HF). Nicotinamide adenosine dinucleotide phosphate (NADPH) oxidases (NOXs) are one of the major sources of ROS and are expressed in different heart cell types, including cardiomyocytes, endothelial cells, fibroblasts, and inflammatory cells. NOX-derived ROS are usually produced in a regulated and spatially confined fashion and typically linked to specific signaling. The two main cardiac isoforms, namely nicotinamide adenine dinucleotide phosphate oxidase isoform 2 (NOX2) and nicotinamide adenine dinucleotide phosphate oxidase isoform 4 (NOX4), possess different biochemical and (patho)physiological properties and exert distinct effects on the cardiac phenotype in many settings. Recent work has defined important cell-specific effects of NOX2 that contribute to pathological cardiac remodeling and dysfunction. NOX4, on the other hand, may exert protective effects by stimulating adaptive stress responses, with recent data showing that NOX4-mediated signaling regulates transcription and metabolism in the heart. The inhibition of NOX2 appears to be a very promising therapeutic target to ameliorate pathological cardiac remodeling. If the beneficial effects of NOX4 can be enhanced, this might be a unique approach to boosting adaptive responses and thereby impact cell survival, activation, contractility, and growth. Increasing knowledge regarding the intricacies of NOX-mediated signaling may yield tractable therapeutic targets, in contrast to the non-specific targeting of oxidative stress. 38, 371-387.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ars.2022.0176DOI Listing

Publication Analysis

Top Keywords

dinucleotide phosphate
16
cardiac remodeling
16
nicotinamide adenosine
8
adenosine dinucleotide
8
nicotinamide adenine
8
adenine dinucleotide
8
phosphate oxidase
8
oxidase isoform
8
pathological cardiac
8
cardiac
6

Similar Publications

Ginkgolide B regulates apoptosis, oxidative stress, and mitochondrial dysfunction in MPP-induced SK-N-SH cells by targeting HDAC4/JNK pathway.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Huai'an Hospital Affiliated to Yangzhou University, The Fifth People's Hospital of Huai'an), 1 Huaihe East Road, Huaiyin District, Huai'an City, Jiangsu Province, China.

Ginkgolide B (GB) is a bioactive constituent found in Ginkgo biloba leaves that has been long recognized as a protective agent against many neurological disorders. Our study aimed to examine the effect of GB in an in vitro Parkinson's disease (PD) model and to investigate its neuroprotective mechanism as a primary objective. SK-N-SH cells were challenged with 1-methyl-4-phenylpyridinium (MPP) to act as a PD-like model of neuronal damage.

View Article and Find Full Text PDF

Catalytic reduction of NAD(P) to NAD(P)H.

Chem Commun (Camb)

January 2025

Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.

1,4-Dihydronicotinamide adenine dinucleotide (NADH) and its phosphate ester (NADPH) are essential cofactors required for all living cells, playing pivotal roles in multiple biological processes such as energy metabolism and biosynthesis. NADPH is produced during photosynthesis by the combination of photosystem II, where water is oxidised, and photosystem I, where NADP is reduced. This review focuses on catalytic NAD(P) (and its analogues) reduction to generate 1,4-NAD(P)H without formation of other regioisomers and the dimer.

View Article and Find Full Text PDF

Nocturnin promotes NADH and ATP production for juvenile hormone biosynthesis in adult insects.

Pest Manag Sci

January 2025

State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China.

Background: Juvenile hormone (JH) is a key endocrine governing insect development, metamorphosis and reproduction. JH analogs have offered great potential for insect pest control. In adulthood, JH titer rapidly increases in the previtellogenic period and reaches a peak in the vitellogenic phase.

View Article and Find Full Text PDF

The Pentose Phosphate Pathway: From Mechanisms to Implications for Gastrointestinal Cancers.

Int J Mol Sci

January 2025

Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.

The pentose phosphate pathway (PPP), traditionally recognized for its role in generating nicotinamide adenine dinucleotide phosphate (NADPH) and ribose-5-phosphate (R5P), has emerged as a critical metabolic hub with involvements in various gastrointestinal (GI) cancers. The PPP plays crucial roles in the initiation, development, and tumor microenvironment (TME) of GI cancers by modulating redox homeostasis and providing precursors for nucleotide biosynthesis. Targeting PPP enzymes and their regulatory axis has been a potential strategy in anti-GI cancer therapies.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by lipid accumulation in the liver due to an excess in their supplies or an impairment in their management. While some patients remain stable for years, a proportion of them progress up to steatohepatitis (MASH). MASLD links with systemic pathways being associated with metabolic and non-metabolic diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!