Surface-modified CuO nanoparticles for photocatalysis and highly efficient energy storage devices.

Environ Sci Pollut Res Int

Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.

Published: March 2023

Herein we report multifunctional surface-modified CuO nanomaterials were used to fulfill escalating needs in the electrochemical energy storage system and to achieve efficient photocatalysts for the degradation of AR88 organic dye. Due to the atom economy, ease of synthesis, high capacitance, observable electrochemical responsiveness, and low bandgap in CuO-based nanomaterials, its active surface was modified through cationic surfactant CTAB. Surface-modified nanoparticles were characterized using various characterization techniques such as XRD, DRS, FESEM, and TEM. Intriguingly the synthesized materials demonstrated a capacitance of 133 F/g with a long-term charge-discharge cycle of 2000 cycles. In addition, at pH 11, the material also exhibited a superior dye degradation performance under the UV lamp by showing 94.8% AR88 degradation at a catalyst concentration of 1.0 g/L. Hence, we believe this concept would provide novel insights into the preparation of the simplest and cheaper multifunctional materials for next-generation energy storage and photocatalytic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-25131-4DOI Listing

Publication Analysis

Top Keywords

energy storage
12
surface-modified cuo
8
cuo nanoparticles
4
nanoparticles photocatalysis
4
photocatalysis highly
4
highly efficient
4
efficient energy
4
storage devices
4
devices report
4
report multifunctional
4

Similar Publications

Multilayer Composite Electrodes for Simultaneously Improved Mechanical and Electrochemical Performance.

ACS Appl Mater Interfaces

January 2025

The Harold & Inge Marcus Department of Industrial & Manufacturing Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

Structural batteries offer a transformative approach to integrate energy storage directly into the frameworks of electric vehicles and aircrafts, enabling multifunctional construction. This study presents a nacre-inspired multilayer composite electrode fabricated via the cold sintering process (CSP), achieving a balance of enhanced electrochemical performance and mechanical robustness. The composite electrode combines active electrode materials with a ductile conducting polymer-carbon-mixture phase in a layered architecture.

View Article and Find Full Text PDF

PiNN: Equivariant Neural Network Suite for Modeling Electrochemical Systems.

J Chem Theory Comput

January 2025

Department of Chemistry-Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, P.O. Box 538, 75121 Uppsala, Sweden.

Electrochemical energy storage and conversion play increasingly important roles in electrification and sustainable development across the globe. A key challenge therein is to understand, control, and design electrochemical energy materials with atomistic precision. This requires inputs from molecular modeling powered by machine learning (ML) techniques.

View Article and Find Full Text PDF

Resolving the Ambiguity of Thermal Reversion in a Nonconjugated Monocyclic Diene-Based Photoswitch for Rechargeable Solar Thermal Batteries.

J Phys Chem A

January 2025

Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana 506004, India.

We report nonconjugated monocyclic dienes (nCMDs) as unique photoswitchable molecules that hold promise for harvesting substantial solar energy and storing it for extended durations. Herein, cyclohepta-1,4-diene and its N-heterocyclic analogue have been considered as prototypical models for investigating photoswitching behavior in nCMDs. Initially, the nonradiative deactivation pathway of nCMD from the low-lying excited state to the [2 + 2]-cycloadduct has been evaluated.

View Article and Find Full Text PDF

Ultrafast Photoflash Synthesis of High-Entropy Oxide Nanoparticles.

ACS Nano

January 2025

Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States.

High-entropy metal oxides (HEOs) have recently received growing attention for broad energy conversion and storage applications due to their tunable properties. HEOs typically involve the combination of multiple metal cations in a single oxide lattice, thus bringing distinctive structures, controllable elemental composition, and tunable functional properties. Many synthesis methods for HEOs have been reported, such as solid-state reactions and carbon thermal shock methods.

View Article and Find Full Text PDF

SARS-CoV-2 CoCoPUTs: analyzing GISAID and NCBI data to obtain codon statistics, mutations, and free energy over a multiyear period.

Virus Evol

January 2025

Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA.

A consistent area of interest since the beginning of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been the sequence composition of the virus and how it has changed over time. Many resources have been developed for the storage and analysis of SARS-CoV-2 data, such as GISAID (Global Initiative on Sharing All Influenza Data), NCBI, Nextstrain, and outbreak.info.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!