Introduction: The use of the Cannabis sativa plant by man has been common for centuries due to its numerous therapeutic properties resulting from the compounds present in it, called cannabinoids. However, the use of these compounds as drugs is still limited due to the psychotropic effects caused by them. The proteins that act as receptors of cannabinoid compounds were identified and characterized, being called CB1 and CB2 receptors. There is a series of 50 cannabinoid compounds that was studied through quantum and chemometric methods in order to obtain a mathematical model that could relate the structure of these compounds to their psychotropic activity. That model proved to be effective by predicting the psychoactivity of the 50 compounds from the series and elucidating relevant characteristics that imply in psychoactivity. However, most of these 50 compounds do not have experimental data of biological activity with CB1 and CB2 receptors.
Objectives: This study aims to generate QSAR models in order to predict the biological activity of the 50 cannabinoid compounds and then relate the predicted biological activity values to the already known psychoactivity.
Methods: Another series of cannabinoid compounds was selected to generate and validate QSAR models, aiming to predict the biological activity of the 50 cannabinoid compounds with both CB1 and CB2 receptors.
Results: The PLS-CB1 and PLS-CB2 QSAR models were generated and validated in this work, proving to be highly predictive, and the biological activities (pK ) of the 50 cannabinoid compounds were predicted by them. It is important to highlight compounds Ic14, Ic18, and Ic19 (psychotropic inactive) which presented higher predicted pK values than the main cannabinoid compounds (Δ9-THC and Δ8-THC). Also, compound Ic21 stood out as the highest value of the predicted biological activities in the interaction with the CB2 receptor.
Conclusion: The generated PLS models and the predicted pK values of the 50 cannabinoid compounds can provide valuable information in the drug design of new cannabinoid compounds that can interact with CB1 and CB2 receptors in a therapeutic way with no psychotropic effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-023-05443-5 | DOI Listing |
IBRO Neurosci Rep
June 2025
Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco.
Cannabis sativa is recognized for its chemical diversity and therapeutic potential, particularly in addressing neurodegenerative diseases such as Alzheimer's disease (AD). Given the complexity of AD, where single-target therapies often prove inadequate, a multi-target approach utilizing cannabis-derived compounds may offer promising alternatives. This review first highlights the chemical diversity of cannabis by categorizing its compounds into cannabinoids and non-cannabinoids.
View Article and Find Full Text PDFMolecules
January 2025
Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
New psychoactive substances (NPSs) emerged in the 2000s as legal alternatives to illicit drugs and quickly became a huge public health threat due to their easy accessibility online, limited information, and misleading labels. Synthetic cannabinoids and synthetic cathinones are the most reported groups of NPSs. Despite NPSs being widely studied, due to their structural diversity and the constant emergence of novel compounds with unknown properties, the development of new techniques is required to clarify their mode of action and evaluate their toxicological effects.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, Italy.
The sustainable utilization of biomass-derived bioactives addresses the growing demand for natural health products and supports sustainable development goals by reducing reliance on synthetic chemicals in healthcare. biomass, in particular, has emerged as a valuable resource within this context. This study focuses on the hydroethanolic extract of leaves (CSE), which exhibited significant levels of phenolic compounds contributing to robust antioxidant activity.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy.
Navelina oranges () are rich in phytonutrients and bioactive compounds, especially flavonoids like hesperidin. This study investigates the anti-inflammatory and anti-fibrotic properties of hesperidin (HE) and a polyphenol mixture from Navelina oranges (OE) in human hepatocytes (Hepa-RG) and hepatic stellate cells (LX-2), in order to elucidate the underlying molecular mechanisms. In Hepa-RG cells, HE treatment increased expression of cannabinoid receptor 2 (CB2R), which was associated with down-regulation of p38 mitogen-activated protein kinases (p38 MAPK) but had minimal impact on cyclooxygenase-2 (COX-2) and transforming growth factor-β (TGF-β) levels.
View Article and Find Full Text PDFBiomedicines
January 2025
Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy.
Antipsychotic medications are a vast class of drugs used for the treatment of psychotic disorders such as schizophrenia. Although numerous compounds have been developed since their introduction in the 1950s, several patients do not adequately respond to current treatments, or they develop adverse reactions that cause treatment discontinuation. Moreover, in the past few decades, discoveries in the pathophysiology of psychotic disorders have opened the way for experimenting with novel compounds that have alternative mechanisms of action, with some of them showing promising results in early trials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!