A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Data-Driven Methods for Predicting ADHD Diagnosis and Related Impairment: The Potential of a Machine Learning Approach. | LitMetric

Current diagnostic criteria for ADHD include several symptoms that highly overlap in conceptual meaning and interpretation. Additionally, inadequate sensitivity and specificity of current screening tools have hampered clinicians' ability to identify those at risk for related outcomes. Using machine learning techniques, the current study aimed to propose a novel algorithm incorporating key ADHD symptoms to predict concurrent and future (i.e., five years later) ADHD diagnosis and related impairment levels. Participants were 399 children with and without ADHD; multiple informant measures of ADHD symptoms, global impairment, academic performance, and social skills were included as part of an accelerated longitudinal design. Results suggested eight symptoms as most important in predicting impairment outcomes five years later: (1) Has difficulty sustaining attention in tasks or play activities, (2) Does not follow through on instructions and fails to finish work, (3) Has difficulty organizing tasks and activities, (4) Avoids tasks (e.g., schoolwork, homework) that require sustained mental effort, (5) Is often easily distracted, (6) Is often forgetful in daily activities, (7) Fidgets with hands or feet or squirms in seat, and (8) Interrupts/intrudes on others. The algorithm comprising this abbreviated list of symptoms performed just as well as or significantly better than one comprising all 18 symptoms in predicting future global impairment and academic performance, but not social skills. It also predicted concurrent and future ADHD diagnosis with 81-93% accuracy. Continued development of screening tools will be key to ensuring access to clinical services for youth at risk for ADHD.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10802-023-01022-7DOI Listing

Publication Analysis

Top Keywords

adhd diagnosis
12
adhd
8
diagnosis impairment
8
machine learning
8
screening tools
8
adhd symptoms
8
concurrent future
8
global impairment
8
impairment academic
8
academic performance
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!