Starting with highly fluorinated benzoates, we develop the directed photocatalytic hydrodefluorination (HDF) of fluorinated aryl benzoates and demonstrate its synergistic use with other HDF strategies, along with C-H arylation, decarboxylative coupling, and decarboxylative protonation, to access most fluorination patterns found in benzoate derivatives and by extension benzene derivatives via a molecular sculpting approach. Mild reaction conditions and excellent regioselectivity make the approach ideal for synthesis. This approach provides access to 16 benzoate derivatives with different fluorination patterns from just a couple of highly fluorinated, commercially available benzoic acids. We synthesize key intermediates or the active pharmaceutical ingredient for sitagliptin, diflunisal, and other pharmaceutically important molecules. Importantly, we provide key insights into relative rates of defluorination and strategies to alter these rates. We provide demonstrations of the synergistic use of HDF and related technologies to rapidly enhance the synthetic complexity of these simple commercially available perfluoroarenes to form complex partially fluorinated molecules.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10198904 | PMC |
http://dx.doi.org/10.1021/acs.joc.2c02332 | DOI Listing |
Cancer Discov
January 2025
Duke NUS Graduate Medical School, Singapore, Singapore.
Gastric cancer (GC) is a major cause of global cancer mortality with high levels of heterogeneity. To explore geospatial interactions in tumor ecosystems, we integrated 2,138 spatial transcriptomic regions-of-interest (ROIs) with 152,423 single-cell expression profiles across 226 GC samples from 121 patients. We observed pervasive expression-based intratumor heterogeneity, recapitulating tumor progression through spatially localized and functionally ordered subgroups associated with specific immune microenvironments, checkpoint profiles, and genetic drivers such as SOX9.
View Article and Find Full Text PDFAntibiotics (Basel)
December 2024
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia.
Irumamycin (Iru) is a complex polyketide with pronounced antifungal activity produced by a type I polyketide (PKS) synthase. Iru features a unique hemiketal ring and an epoxide group, making its biosynthesis and the structural diversity of related compounds particularly intriguing. In this study, we performed a detailed analysis of the biosynthetic gene cluster (BGC) to uncover the mechanisms underlying Iru formation.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China. Electronic address:
Colorectal cancer (CRC) is an exceedingly common and profoundly impactful malignancy of the digestive system, posing a grave threat to human health. Endoplasmic reticulum stress (ERS) is an intracellular biological reaction that mobilizes the unfolded protein response (UPR) to tackling dysregulation in protein homeostasis. This process subtly modulates the cell to either restore normal cellular function or steer it towards apoptosis.
View Article and Find Full Text PDFTrends Cancer
January 2025
Cancer Immunity Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain. Electronic address:
Macrophages are myeloid cells that receive, integrate, and respond to tumoral cues. Tumors evolve and are shaped by macrophages, with tumor-associated macrophage (TAM)-tumor sculpting capacities going beyond an increase in their cellular mass. Longitudinal and local heterogeneity of TAM states is now possible with the use of single-cell and spatial transcriptomics.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Biology, Washington University in Saint Louis, USA.
Circadian rhythms in mammals arise from the spatiotemporal synchronization of ~20,000 neuronal clocks in the Suprachiasmatic Nucleus (SCN). While anatomical, molecular, and genetic approaches have revealed diverse cell types and signaling mechanisms, the network wiring that enables SCN cells to communicate and synchronize remains unclear. To overcome the challenges of revealing functional connectivity from fixed tissue, we developed MITE (Mutual Information & Transfer Entropy), an information theory approach that infers directed cell-cell connections with high fidelity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!