We develop analytic gradients for selected configuration interaction wave functions. Despite all pairs of molecular orbitals now potentially having to be considered for the coupled perturbed Hartree-Fock equations, we show that degenerate orbital pairs belonging to different irreducible representations in the largest abelian subgroup do not need to be included and instabilities due to degeneracies are avoided. We introduce seminumerical gradients and use them to validate the analytic approach even when near degeneracies are present due to high-symmetry geometries being slightly distorted to break symmetry. The method is applied to carbon monoxide, ammonia, square planar H, hexagonal planar H, and methane for a range of bond lengths where we demonstrate that analytic gradients for selected configuration interaction can approach the quality of full configuration interaction yet only use a very small fraction of its determinants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9933441 | PMC |
http://dx.doi.org/10.1021/acs.jctc.2c01062 | DOI Listing |
Phys Rev Lett
December 2024
Institut Langevin, ESPCI Paris, Université PSL, CNRS, 75005 Paris, France.
The interaction between waves and evolving media challenges traditional conservation laws. We experimentally investigate the behavior of elastic wave packets crossing a moving interface that separates two media with distinct propagation properties, observing the noninvariance of wavelength and frequency. Our experimental setup employs an elastic strip whose local stretching can be dynamically altered by pulling one end at a constant velocity.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
Time-resolved spectroscopy is an important tool for probing photochemically induced nonequilibrium dynamics and energy transfer. Herein, a method is developed for the ab initio simulation of vibronic spectra and dynamical processes. This framework utilizes the recently developed nuclear-electronic orbital time-dependent configuration interaction (NEO-TDCI) approach, which treats all electrons and specified nuclei quantum mechanically on the same footing.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5,Canada.
The combined density functional theory and multireference configuration interaction (DFT/MRCI) method is a semiempirical electronic structure approach that is both computationally efficient and has predictive accuracy for the calculation of electronic excited states and for the simulation of electronic spectroscopies. However, given that the reference space is generated via a selected-CI procedure, a challenge arises in the construction of smooth potential energy surfaces. To address this issue, we treat the local discontinuities that arise as noise within the Gaussian progress regression framework and learn the surfaces by explicitly incorporating and optimizing a white-noise kernel.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
LPHE-MS, Faculty of Science, Mohammed V University in Rabat, Morocco.
This study explores the optoelectronic and photovoltaic potential of acceptor-π-donor (A-π-D) architectures utilizing CSi quantum dots (CSiQDs) through a combination of density functional theory (DFT) and time-dependent DFT (TDDFT). We examined two key structural configurations: C-C and Si-C conformers. In these systems, CSiQDs serve as the acceptor, CHSF as the π-bridge, and 3 × (CHO) as the donor.
View Article and Find Full Text PDFData Brief
February 2025
Department of Computer Science, FEL, Czech Technical University in Prague, Technická 2, Prague 126 627, Czech Republic.
This data article introduces a new network dataset created to help understand how geographical location impacts the quality, type, and amount of incoming network attacks received by honeypots. The dataset consists of 12.4 million network flows collected from nine low-interaction honeypots in nine cities across the world for 65 days, from April 29th to July 1st, 2024.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!