The discovery of aggregation-induced emission (AIE) phenomenon in 2001 has had a significant impact on materials development across different research disciplines. AIE-active materials have been widely exploited for various applications in optoelectronics, sensing, biomedical, and stimuli-responsive systems, etc. This is made possible by integrating AIE features with other fields of science and engineering, such as nanoscience and nanotechnology. AIE has been extensively employed, particularly for biomedical applications, such as biosensing, bioimaging, and theranostics. However, development of AIE-based nanotechnology for other applications is comparatively less, although there have been increasing research activities in recent years. Given the significance and potential of the marriage between AIE hallmark and nanotechnology in AIE-active materials development, this review article summarizes and showcases the latest research efforts in AIE-based nanomaterials, including nanomaterials synthesis and their nonbiomedical applications, such as sensing, optoelectronics, functional coatings, and stimuli-responsive systems. A perspective on the outlook of AIE-based nanostructured materials and relevant nanotechnology for nonbiomedical applications will be provided, giving an insight into how to design AIE-active nanostructures as well as their applications beyond the biomedical domain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.2c10826 | DOI Listing |
Nat Commun
December 2024
State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Biomedical Pioneering Innovative Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), Peking University, 100871, Beijing, China.
Deciphering how noncoding DNA determines gene expression is critical for decoding the functional genome. Understanding the transcription effects of noncoding genetic variants are still major unsolved problems, which is critical for downstream applications in human genetics and precision medicine. Here, we integrate regulatory-specific neural networks and tissue-specific gradient-boosting trees to build SVEN: a hybrid sequence-oriented architecture that can accurately predict tissue-specific gene expression level and quantify the tissue-specific transcriptomic impacts of structural variants across more than 350 tissues and cell lines.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China.
Small-scale continuum robots hold promise for interventional diagnosis and treatment, yet existing models struggle to achieve small size, precise steering, and visualized functional treatment simultaneously, termed an "impossible trinity". This study introduces an optical fiber-based continuum robot integrated imaging, high-precision motion, and multifunctional operation abilities at submillimeter-scale. With a slim profile of 0.
View Article and Find Full Text PDFNat Commun
December 2024
Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
Large-amount encapsulation and subsequent expressing are common characteristics for many biomedical applications, such as cosmetic creams and medical ointments. Emulsion gels can accomplish that, but often undergo exclusive, complex, multiple synthesis steps, showing extremely laborious and non-universal. The method here is simple via precisely interfacial engineering in homogenizing a nanoparticle aqueous dispersion and a polymer oil solution, gaining interfacial 45° three-phase-contact-angle for the nanoparticle that can bridge across oil emulsions' interfaces and ultimately form interconnected macroscopic networks.
View Article and Find Full Text PDFAdv Mater
December 2024
School of Chemical Engineering, The University of Adelaide, North Terrace, South Australia, 5005, Australia.
Nanomaterials have become essential in the daily lives, finding applications in food, skincare, drugs, and vaccines. Traditionally, the surface chemistry of nanoparticles (NPs) is considered the key factor in determining their interactions with biological systems. However, recent studies have shown that the mechanical properties of nanomaterials are equally important in regulating nano-bio interactions, though they have often been overlooked.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR, China.
The patch clamp technique is a fundamental tool for investigating ion channel dynamics and electrophysiological properties. This study proposes the first artificial intelligence framework for characterizing multiple ion channel kinetics of whole-cell recordings. The framework integrates machine learning for anomaly detection and deep learning for multi-class classification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!