Stimuli-responsive cross-linked nanocarriers that can induce lysosomal cell death (LCD) lysosomal membrane permeabilization (LMP) represent a new class of delivery platforms and have attracted the attention of researchers in the biomedical field. The advantages of such cross-linked nanocarriers are as follows (i) they remain intact during blood circulation; and (ii) they reach the target site specific receptor-mediated endocytosis leading to the enhancement of therapeutic efficacy and reduction of side effects. Herein, we have synthesized a mannose-6-phosphate (M6P) based amphiphilic ABC type tri-block copolymer having two chains of FDA-approved poly(ε-caprolactone) (PCL) as the hydrophobic block, and poly(-(-nitrobenzyl)-L-cysteine) (NBC) acts as the photoresponsive crosslinker block. Two different tri-block copolymers, [(PCL)--NBC--GP] and [(PCL)--NBC--GP], were synthesized which upon successful self-assembly initially formed spherical uncross-linked "micellar-type" aggregates (UCL-M) and vesicles (UCL-V), respectively. The uncross-linked nanocarriers upon UV treatment for thirty minutes were covalently crosslinked in the middle PNBC block giving rise to the di-sulfide bonds and forming interface cross-linked "micellar-type" aggregates (ICL-M) and vesicles (ICL-V). DLS, TEM, and AFM techniques were used to successfully characterize the morphology of these nanocarriers. The dual stimuli (redox and enzyme) responsiveness of the cross-linked nanocarriers and their trafficking to the lysosome in mammalian cells receptor-mediated endocytosis was probed using confocal microscopy images. Furthermore, the addition of a chloroquine (CQ, a known lysosomotropic agent) encapsulated cross-linked nanocarrier (CQ@ICL-V) to non-cancerous (HEK-293T) cells and liver (HepG2), and breast cancer cells (MDA-MB-231) was found to initiate lysosomal membrane permeabilization (LMP) followed by lysosomal destabilization which eventually led to lysosomal cell death (LCD). Due to the targeted delivery of CQ to the lysosomes of cancerous cells, almost a 90% smaller amount of CQ was able to achieve similar cell death to CQ alone.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2bm02110bDOI Listing

Publication Analysis

Top Keywords

lysosomal membrane
12
membrane permeabilization
12
cross-linked nanocarriers
12
cell death
12
stimuli-responsive cross-linked
8
tri-block copolymer
8
lysosomal cell
8
death lcd
8
permeabilization lmp
8
receptor-mediated endocytosis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!