Background: One of the neurodevelopmental disorders widely affecting school-aged children in recent years is attention deficit hyperactivity disorder (ADHD). In many neurodevelopmental disorders, grey matter may be used as a clinical indicator by looking at MRIs.

Objective: The study aimed to segment grey matter from brain MRI using a proposed fuzzy c-means clustering-based technique for the detection of ADHD and its subtypes (ADHD-Inattentive, ADHDHyperactive, and ADHD-Combined). The grey matter volume, age, gender, and medication status of the subjects were investigated to identify ADHD subtypes.

Methods: A modified fuzzy c-means with an elbow approach has been proposed to overcome the drawbacks of previous fuzzy c-means methods and improve segmentation performance. The volume of segmented grey matter was included with the phenotypic information of the ADHD-200 dataset for data analysis of typically developing (TD) and ADHD subtypes.

Results: The proposed segmentation exhibited a dice similarity index of 95%. ADHD-Inattentive exhibited a loss of grey matter in the prefrontal cortex, while ADHD-hyperactive exhibited a loss of grey matter in the cerebellum when compared to TD. The analysis of ADHD subtypes based on age and gender showed that children transitioning to adolescence are mostly affected by ADHD-inattentive and female kids are less prone to ADHD-hyperactive. The whole grey matter volume of ADHD-inattentive children, on average, was found to be approximately 4% less than ADHD-combined. Furthermore, the whole grey matter volume was less in non-medication naive children.

Conclusion: This study may support healthcare providers in giving appropriate occupational therapy based on the identification of different ADHD subtypes.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1573405619666230119144142DOI Listing

Publication Analysis

Top Keywords

grey matter
36
matter volume
16
fuzzy c-means
12
adhd subtypes
12
grey
9
matter
9
subtypes based
8
neurodevelopmental disorders
8
adhd-combined grey
8
age gender
8

Similar Publications

A High Fat, High Sugar Diet Exacerbates Persistent Post-Surgical Pain and Modifies the Brain-Microbiota-Gut Axis in Adolescent Rats.

Neuroimage

January 2025

Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Gastroenterology, Immunology, Neuroscience (GIN) Discovery Program. Electronic address:

Persistent post-surgical pain (PPSP) occurs in a proportion of patients following surgical interventions. Research suggests that specific microbiome components are important for brain development and function, with recent studies demonstrating that chronic pain results in changes to the microbiome. Consumption of a high fat, high sugar (HFHS) diet can drastically alter composition of the microbiome and is a modifiable risk factor for many neuroinflammatory conditions.

View Article and Find Full Text PDF

Background: Cerebrospinal fluid (CSF) loss in spontaneous intracranial hypotension (SIH) is accompanied by volume shifts between the intracranial compartments. This study investigated tricompartimental and longitudinal volume shifts after closure of a CSF leak.

Methods: Patients with SIH and suitable pre-therapeutic and post-therapeutic imaging for volumetric analysis were identified from our tertiary care center between 2020 and 2023.

View Article and Find Full Text PDF

Whole-brain gray matter volume and fractional anisotropy of the posterior thalamic radiation and sagittal stratum in healthy adults correlate with the local environment.

Neuroimage

January 2025

Open Innovation Institute, Kyoto University, Kyoto, Japan; Graduate School of Management, Kyoto University, Kyoto, Japan; Institute of Innovative Research, Tokyo Institute of Technology, Meguro, Tokyo, Japan; ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan), Chiyoda, Tokyo, Japan; Office for Academic and Industrial Innovation, Kobe University, Kobe, Japan; Brain Impact, Kyoto, Japan.

The impacts of air pollution, local climate, and urbanization on human health have been well-documented in recent studies. In this study, we combined magnetic resonance imaging (MRI) brain analysis with a questionnaire survey on the local environment in 141 healthy middle-aged men and women. Our findings reveal that a favorable environment is positively correlated with gray matter volume (GMV) in the frontal and occipital lobes, cerebellum, and whole brain, as well as with fractional anisotropy (FA) in the fornix (including the fornix stria terminalis), posterior thalamic radiation (PTR), sagittal stratum (SS), and whole brain.

View Article and Find Full Text PDF

The relationship between brain connections and non-imaging phenotypes is increasingly studied using deep neural networks. However, the local and global properties of the brain's white matter networks are often overlooked in convolutional network design. We introduce TractGraphFormer, a hybrid Graph CNN-Transformer deep learning framework tailored for diffusion MRI tractography.

View Article and Find Full Text PDF

Influence of lung function on macro- and micro-structural brain changes in mid- and late-life.

Int J Surg

January 2025

Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.

Introduction: Lung function has been associated with cognitive decline and dementia, but the extent to which lung function impacts brain structural changes remains unclear. We aimed to investigate the association of lung function with structural macro- and micro-brain changes across mid- and late-life.

Methods: The study included a total of 37 164 neurologic disorder-free participants aged 40-70 years from the UK Biobank, who underwent brain MRI scans 9 years after baseline.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!