Additive Manufacturing of Large Coreless Filament Wound Composite Elements for Building Construction.

3D Print Addit Manuf

Institute for Computational Design and Construction (ICD), University of Stuttgart, Stuttgart, Germany.

Published: June 2022

Digitization and automation are essential tools to increase productivity and close significant added-value deficits in the building industry. Additive manufacturing (AM) is a process that promises to impact all aspects of building construction profoundly. Of special interest in AM is an in-depth understanding of material systems based on their isotropic or anisotropic properties. The presented research focuses on fiber-reinforced polymers, with anisotropic mechanical properties ideally suited for AM applications that include tailored structural reinforcement. This article presents a cyber-physical manufacturing process that enhances existing robotic coreless Filament Winding (FW) methods for glass and carbon fiber-reinforced polymers. Our main contribution is the complete characterization of a feedback-based, sensor-informed application for process monitoring and fabrication data acquisition and analysis. The proposed AM method is verified through the fabrication of a large-scale demonstrator. The main finding is that implementing AM in construction through cyber-physical robotic coreless FW leads to more autonomous prefabrication processes and unlocks upscaling potential. Overall, we conclude that material-system-aware communication and control are essential for the efficient automation and design of fiber-reinforced polymers in future construction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586243PMC
http://dx.doi.org/10.1089/3dp.2020.0346DOI Listing

Publication Analysis

Top Keywords

fiber-reinforced polymers
12
additive manufacturing
8
coreless filament
8
building construction
8
manufacturing process
8
robotic coreless
8
manufacturing large
4
large coreless
4
filament wound
4
wound composite
4

Similar Publications

The effect of dispersing multiwalled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) in the matrix on the low-velocity impact resistance and post-impact residual tensile strength of the carbon fiber reinforced epoxy composite laminates has been experimentally analyzed in this study. The composite specimens with the matrix reinforced by different nanoparticle types and various nanoparticle concentrations (0.1, 0.

View Article and Find Full Text PDF

Natural plant fibers (NPFs) have emerged as a sustainable alternative in the manufacture of composites due to their renewability and low environmental impact. This has led to a significant increase in the use of natural plant fiber-reinforced polymers (NPFRPs) in a variety of industries. The diversity of NPF types brings a wide range of properties and functionalities to NPFRPs, which in turn highlights the urgent need to improve the properties of fiber materials in order to enhance their performance and suitability.

View Article and Find Full Text PDF

Investigation of Damping Properties of Natural Fiber-Reinforced Composites at Various Impact Energy Levels.

Polymers (Basel)

December 2024

Department of Automotive Engineering, Faculty of Technology, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey.

Natural fiber-reinforced composites are composite materials composed of natural fibers, such as plant fibers and synthetic biopolymers. These environmentally friendly composites are biodegradable, renewable, cheap, lightweight, and low-density, attracting attention as eco-friendly alternatives to synthetic fiber-reinforced composites. In this study, natural fiber-reinforced polymer foam core layered composites were produced for the automotive industry.

View Article and Find Full Text PDF

Carbon fiber-reinforced polymer (CFRP) composites are widely used in aviation thermal insulation layers due to their high strength-to-weight ratio and excellent high-temperature performance. However, challenges remain regarding their structural integrity and durability under extreme conditions. This study first employed finite element simulation to model the damage evolution of CFRP laminated plates under axial tensile loads and their thermal decomposition behavior in high-temperature environments, providing a theoretical reference.

View Article and Find Full Text PDF

Given the current construction waste accumulation problem, to utilize the resource of red brick solid waste, construction waste red brick was used as a concrete coarse aggregate combined with polypropylene fiber to prepare PPF (polypropylene fiber)-reinforced recycled brick aggregate concrete. Through a cube compression test, axial compression test, and four-point bending test of 15 groups of specimens, the influences of the aggregate replacement rate of recycled brick and the PPF volume on the mechanical properties of recycled brick aggregate concrete reinforced by PPF were studied, and a strength parameter calculation formula was constructed and modified based on the above. Finally, combined with a life cycle assessment (LCA), the carbon emissions of raw materials were analyzed and evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!