A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cardiovascular events and artificial intelligence-predicted age using 12-lead electrocardiograms. | LitMetric

Background: There is increasing evidence that 12-lead electrocardiograms (ECG) can be used to predict biological age, which is associated with cardiovascular events. However, the utility of artificial intelligence (AI)-predicted age using ECGs remains unclear.

Methods: Using a single-center database, we developed an AI-enabled ECG using 17 042 sinus rhythm ECGs (SR-ECG) to predict chronological age (CA) with a convolutional neural network that yields AI-predicted age. Using the 5-fold cross validation method, AI-predicted age deriving from the test dataset was yielded for all ECGs. The incidence by AgeDiff and the areas under the curve by receiver operating characteristic curve with AI-predicted age for cardiovascular events were analyzed.

Results: During the mean follow-up period of 460.1 days, there were 543 cardiovascular events. The annualized incidence of cardiovascular events was 2.24 %, 2.44 %, and 3.01 %/year for patients with AgeDiff < -6, -6 to ≤6, and >6 years, respectively. The areas under the curve for cardiovascular events with CA and AI-predicted age, respectively, were 0.673 and 0.679 (Delong's test, P = 0.388) for all patients; 0.642 and 0.700 (P = 0.003) for younger patients (CA < 60 years); and 0.584 and 0.570 (P = 0.268) for older patients (CA ≥ 60 years).

Conclusions: AI-predicted age using 12-lead ECGs showed superiority in predicting cardiovascular events compared with CA in younger patients, but not in older patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9841236PMC
http://dx.doi.org/10.1016/j.ijcha.2023.101172DOI Listing

Publication Analysis

Top Keywords

cardiovascular events
24
ai-predicted age
20
age
8
12-lead electrocardiograms
8
areas curve
8
cardiovascular
6
events
5
ai-predicted
5
events artificial
4
artificial intelligence-predicted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!