Artificial Evolution and Design for Multi-Material Additive Manufacturing.

3D Print Addit Manuf

Department of Mechanical Engineering, Auckland University of Technology, Auckland, New Zealand.

Published: December 2020

Limitations of the traditional manufacturing methods often force engineered components to be made of single material systems. However, this is going through changes due to the advent of additive manufacturing (AM) methods, as the point-by-point consolidation allows for a possible change of the material constitution within a given part domain. This will give rise to a plethora of new material and property options for the designers, where just human perception may fail to realize the full benefits. Automated design tools integrating material choice, dispersion, analysis, and optimization algorithms need to be developed to assist in finding the optimal multi-material dispersion solutions achieving given performance criteria sets. Considering the fact that the multi-material manufacturing systems are only recently coming into use, design solutions targeting optimal placement of multiple materials are not common. This article addresses this gap, evaluating a numerical model integrated with different optimization schemes to find the optimal material solutions achieving certain preset performance criteria such as combinations of natural frequencies in different degrees of freedom. A case study of three different metaheuristic optimization schemes based on genetic algorithms indicates, first, that it is possible to create a beam with six uniformly spaced natural frequencies and to change these frequencies without modifying the structural geometry; and second that the basic genetic algorithm generally outperforms neural net-based alternatives for this problem. This tailoring of the structural resonance spectrum demonstrates that evolutionary computing combined with multi-material AM can be used to unlock previously unavailable structural functionality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586240PMC
http://dx.doi.org/10.1089/3dp.2020.0114DOI Listing

Publication Analysis

Top Keywords

additive manufacturing
8
manufacturing methods
8
solutions achieving
8
performance criteria
8
optimization schemes
8
natural frequencies
8
material
5
artificial evolution
4
evolution design
4
multi-material
4

Similar Publications

A review on hydroxyapatite fabrication: from powders to additive manufactured scaffolds.

Biomater Sci

January 2025

Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.

Hydroxyapatite (HA), the main inorganic bone component, is the most widely researched bioceramic for bone repair. This paper presents a comprehensive review of recent advancements in HA synthesis methods and their integration into additive manufacturing (AM) processes. Synthesis methodologies discussed include wet, dry, and biomimetic routes, emphasizing their impact on tailoring the physicochemical properties of HA for biomedical applications.

View Article and Find Full Text PDF

This paper provides a thorough analysis of recent advancements and emerging trends in the integration of metal additive manufacturing (AM) within orthopedic implant development. With an emphasis on the use of various metals and alloys, including titanium, cobalt-chromium, and nickel-titanium, the review looks at their characteristics and how they relate to the creation of various orthopedic implants, such as spinal implants, hip and knee replacements, and cranial-facial reconstructions. The study highlights how metal additive manufacturing (AM) can revolutionize the field by enabling customized implant designs that take patient anatomical variances into account.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are widely investigated for their implications in cell-cell signaling, immune modulation, disease pathogenesis, cancer, regenerative medicine, and as a potential drug delivery vector. However, maintaining integrity and bioactivity of EVs between Good Manufacturing Practice separation/filtration and end-user application remains a consistent bottleneck towards commercialization. Milk-derived extracellular vesicles (mEVs), separated from bovine milk, could provide a relatively low-cost, scalable platform for large-scale mEV production; however, the reliance on cold supply chain for storage remains a logistical and financial burden for biologics that are unstable at room temperature.

View Article and Find Full Text PDF

Ultrasound can improve the quality of finished products by reducing porosity and enhancing microstructure in selective laser melting, directed energy deposition, and laser beam welding. This study evaluates the efficiency of ultrasound produced by a pulsed laser via the optoacoustic effect. A quantitative model of collapse of vapor-gas bubbles has been developed under the conditions of ultrasonic treatment at near resonance frequencies.

View Article and Find Full Text PDF

Chitosan/alginate polyelectrolyte complex hydrogels by additive manufacturing for in vitro 3D ovarian Cancer modeling.

Int J Biol Macromol

January 2025

BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM - Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy. Electronic address:

Polyelectrolyte complexes (PECs) are self-assembled systems formed from oppositely charged polymers, used to create hydrogels for cell culture. This work was aimed at additive manufacturing 3D hydrogels made of a PEC between chitosan (Cs) and alginate, as well as their investigation for in vitro 3D ovarian cancer modeling. PEC hydrogels stability in cell culture medium demonstrated their suitability for long-term cell culture applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!