The growth of lithium (Li) whiskers is detrimental to Li batteries. However, it remains a challenge to directly track Li whisker growth. Here we report in situ observations of electrochemically induced Li deposition under a CO atmosphere inside an environmental transmission electron microscope. We find that the morphology of individual Li deposits is strongly influenced by the competing processes of cracking and self-healing of the solid electrolyte interphase (SEI). When cracking overwhelms self-healing, the directional growth of Li whiskers predominates. In contrast, when self-healing dominates over cracking, the isotropic growth of round Li particles prevails. The Li deposition rate and SEI constituent can be tuned to control the Li morphologies. We reveal a new "weak-spot" mode of Li dendrite growth, which is attributed to the operation of the Bardeen-Herring growth mechanism in the whisker's cross section. This work has implications for the control of Li dendrite growth in Li batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scib.2021.05.002 | DOI Listing |
Materials (Basel)
December 2024
School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China.
Concrete, as the most widely used construction material globally, is prone to cracking under the influence of external factors such as mechanical loads, temperature fluctuations, chemical corrosion, and freeze-thaw cycles. Traditional concrete crack repair methods, such as epoxy resins and polymer mortars, often suffer from a limited permeability, poor compatibility with substrates, and insufficient long-term durability. Microbial biogrouting technology, leveraging microbial-induced calcium carbonate precipitation (MICP), has emerged as a promising alternative for crack sealing.
View Article and Find Full Text PDFMater Horiz
January 2025
College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China.
Hydrogels are promising materials for wearable electronics, artificial skins and biomedical engineering, but their limited stretchability, self-recovery and crack resistance restrict their performance in demanding applications. Despite efforts to enhance these properties using micelle cross-links, nanofillers and dynamic interactions, it remains a challenge to fabricate hydrogels that combine high stretchability, self-healing and strong adhesion. Herein, we report a novel hydrogel synthesized the copolymerization of acrylamide (AM), maleic acid (MA) and acrylonitrile (AN), designed to address these limitations.
View Article and Find Full Text PDFBiointerphases
November 2024
State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
Self-healing cement takes advantage of microbial induced carbonate precipitation (MICP), a meritorious biological process, to achieve automatic healing of cement cracks. In this study, two beneficial factors, optimization of the bacteria culture medium and encapsulation of bacterial spores, were used to improve the MICP efficiency of Sporosarcina pasteurii in self-healing cement. On the one hand, in medium optimization, we compared the growth of Sporosarcina pasteurii fed with two generally used nitrogen sources, e.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland.
This study investigates how recycled metal fibres from End-of-Life Tyres (ELTs) affect both microwave heating efficiency and crack healing properties in dense asphalt mixtures. The aim is to improve tyre recyclability by using their fibres in asphalt and exploring their self-healing potential with microwave heating. To achieve this, four dense asphalt mixture designs were studied in the laboratory.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Department of Chemistry and Bioengineering, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University (VILNIUSTECH), Saulėtekio al. 11, 10223 Vilnius, Lithuania.
The capacity of biological self-healing concrete (BSHC) to repair cracks relies on the sustained viability and metabolic function of bacteria embedded within the concrete. BSHC structures face significant risk in cold climates due to low temperatures and freeze-thaw (FT) cycles, during which freezing water can generate internal pressure that damages bacterial cells and diminishes their activity. A special feature of this study is the incorporation of bacterial spores within expanded clay aggregates, tested under varying environmental conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!