A hybrid magnetometer towards femtotesla sensitivity under ambient conditions.

Sci Bull (Beijing)

CAS Key Laboratory of Microscale Magnetic Resonance and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China; Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China. Electronic address:

Published: January 2021

Detecting magnetic field is of great importance for many applications, such as magnetoencephalography and underground prospecting. There have been many magnetometers being widely used since the age of Hall magnetometer. One of the magnetometers, the superconducting quantum interference device, is capable of measuring femtotesla magnetic fields at cryogenic temperature. However, a solid-state magnetometer with femtotesla sensitivity under ambient conditions remains elusive. Here we present a hybrid magnetometer based on the ensemble nitrogen-vacancy centers in diamond with the sensitivity of (195±60)fT/Hz under ambient conditions, which can be further advanced to 11fT/Hz at 100 Hz with cutting-edge fabrication technologies. Our method will find potential applications in biomagnetism and geomagnetism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scib.2020.08.001DOI Listing

Publication Analysis

Top Keywords

ambient conditions
12
hybrid magnetometer
8
magnetometer femtotesla
8
femtotesla sensitivity
8
sensitivity ambient
8
conditions detecting
4
detecting magnetic
4
magnetic field
4
field great
4
great applications
4

Similar Publications

Synthesis of Nonplanar Push-Pull Chromophores with Various Heterocyclic Moieties via [2 + 2] Cycloaddition-Retroelectrocyclization Reaction.

J Org Chem

January 2025

Department of Materials Science and Engineering, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan.

A series of 1,1,4,4-tetracyanobuta-1,3-diene (TCBD) derivatives with various heterocyclic moieties, including pyridine, carbazole, indole, and benzothiadiazole, was newly synthesized through a [2 + 2] cycloaddition-retroelectrocyclization reaction. Symmetric electron-rich 1,3-butadiynes with end-capped heterocyclic substituents were reacted with tetracyanoethylene (TCNE), yielding the target TCBD products in 60-80% yields under ambient or mild heating conditions. The thermal stability and optical and electrochemical properties of both 1,3-butadiyne precursors and the corresponding TCBD derivatives were investigated by using thermogravimetric analysis (TGA), UV-vis spectroscopy, and cyclic voltammetry (CV).

View Article and Find Full Text PDF

Medical Problems of Chronic Hypoxia in Highlanders Living on the Tibetan Plateau.

High Alt Med Biol

January 2025

The Research Center for High Altitude Medicine, Qinghai University, Xining, China.

Ri-Li Ge. Medical problems of chronic hypoxia in highlanders living on the tibetan plateau. 00:00-00, 2024.

View Article and Find Full Text PDF

n-butane (n-C4H10) and isobutane (i-C4H10) are important raw materials in chemical industry. The separation of the two hydrocarbon isomers via distillation is challenging and energy-consuming. Herein we report the adsorption behavior of a microporous cobalt formate framework [Co3(HCOO)6] for potential kinetic separation of butane isomers.

View Article and Find Full Text PDF

The nonthermal destruction of aqueous film-forming foam (AFFF) stockpiles, one of the major culprits responsible for water and soil contamination by per- and polyfluoroalkyl substances (PFAS), is extremely challenging because of the coexistence of mixed recalcitrant PFAS and complicated organic matrices at extremely high concentrations. To date, the complete defluorination of undiluted AFFF at ambient conditions has not been demonstrated. This study reports a novel piezoelectric ball milling approach for treating AFFF with a total organic fluorine concentration of 9080 mg/L and total organic carbon of 234 g/L.

View Article and Find Full Text PDF

Quantifying changes in the properties of smoke aerosols under varying conditions is important for understanding the health and environmental impacts of exposure to smoke. Smoke composition, aerosol liquid water content, effective density (ρ), and other properties can change significantly as smoke travels through areas under different ambient conditions and over time. During this study, we measured changes in smoke composition and physical properties due to oxidative aging and exposure to humidity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!