A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Thermal boundary layer analysis of MHD nanofluids across a thin needle using non-linear thermal radiation. | LitMetric

An analysis of steady two-dimensional boundary layer MHD (magnetohydrodynamic) nanofluid flow with nonlinear thermal radiation across a horizontally moving thin needle was performed in this study. The flow along a thin needle is considered to be laminar and viscous. The Rosseland estimate is utilized to portray the radiation heat transition under the energy condition. Titanium dioxide (TiO$ _2 $) is applied as the nanofluid and water as the base fluid. The objective of this work was to study the effects of a magnetic field, thermal radiation, variable viscosity and thermal conductivity on MHD flow toward a porous thin needle. By using a suitable similarity transformation, the nonlinear governing PDEs are turned into a set of nonlinear ODEs which are then successfully solved by means of the homotopy analysis method using Mathematica software. The comparison result for some limited cases was achieved with earlier published data. The governing parameters were fixed values throughout the study, i.e., $ k_1 $ = 0.3, $ M $ = 0.6, $ F_r $ = 0.1, $ \delta_\mu $ = 0.3, $ \chi $ = 0.001, $ Pr $ = 0.7, $ Ec $ = 0.5, $ \theta_r $ = 0.1, $ \epsilon $ = 0.2, $ Rd $ = 0.4 and $ \delta_k $ = 0.1. After detailed analysis of the present work, it was discovered that the nanofluid flow diminishes with growth in the porosity parameter, variable viscosity parameter and magnetic parameter, while it upsurges when the rate of inertia increases. The thermal property enhances with the thermal conductivity parameter, radiation parameter, temperature ratio parameter and Eckert number, while it reduces with the Prandtl number and size of the needle. Moreover, skin friction of the nanofluid increases with corresponding growth in the magnetic parameter, porosity parameter and inertial parameter, while it reduces with growth in the velocity ratio parameter. The Nusselt number increases with increases in the values of the inertia parameter and Eckert number, while it decliens against a higher estimation of the Prandtl number and magnetic parameter. This study has a multiplicity of applications like petroleum products, nuclear waste disposal, magnetic cell separation, extrusion of a plastic sheet, cross-breed powered machines, grain storage, materials production, polymeric sheet, energy generation, drilling processes, continuous casting, submarines, wire coating, building design, geothermal power generations, lubrication, space equipment, biomedicine and cancer treatment.

Download full-text PDF

Source
http://dx.doi.org/10.3934/mbe.2022658DOI Listing

Publication Analysis

Top Keywords

thin needle
16
thermal radiation
12
parameter
12
magnetic parameter
12
boundary layer
8
nanofluid flow
8
variable viscosity
8
thermal conductivity
8
porosity parameter
8
ratio parameter
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!