Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The growth of distributed generation significantly reduces the synchronous generators' overall rotational inertia, causing large frequency deviation and leading to an unstable grid. Adding virtual rotational inertia using virtual synchronous generators (VSG) is a promising technique to stabilize grid frequency. Due to coupled nature of frequency and active output power in a grid-tied virtual synchronous generator (GTVSG), the simultaneous design of transient response and steady state error becomes challenging. This paper presents a duplex PD inertial damping control (DPDIDC) technique to provide active power control decoupling in GTVSG. The power verses frequency characteristics of GTVSG is analyzed emphasizing the inconsistencies between the steady-state error and transient characteristics of active output power. The two PD controllers are placed in series with the generator's inertia forward channel and feedback channel. Finally, the performance superiority of the developed control scheme is validated using a simulation based study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3934/mbe.2022560 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!