Most structural and evolutionary properties of galaxies strongly rely on the stellar initial mass function (IMF), namely the distribution of the stellar mass formed in each episode of star formation. The IMF shapes the stellar population in all stellar systems, and so has become one of the most fundamental concepts of modern astronomy. Both constant and variable IMFs across different environments have been claimed despite a large number of theoretical and observational efforts. However, the measurement of the IMF in Galactic stellar populations has been limited by the relatively small number of photometrically observed stars, leading to high uncertainties. Here we report a star-counting result based on approximately 93,000 spectroscopically observed M-dwarf stars, an order of magnitude more than previous studies, in the 100-300 parsec solar neighbourhood. We find unambiguous evidence of a variable IMF that depends on both metallicity and stellar age. Specifically, the stellar population formed at early times contains fewer low-mass stars compared with the canonical IMF, independent of stellar metallicities. In more recent times, however, the proportion of low-mass stars increases with stellar metallicity. The variable abundance of low-mass stars in our Milky Way establishes a powerful benchmark for models of star formation and can heavily affect results in Galactic chemical-enrichment modelling, mass estimation of galaxies and planet-formation efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-022-05488-1 | DOI Listing |
Nature
November 2024
Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA, USA.
Fast radio bursts (FRBs) are millisecond-duration events detected from beyond the Milky Way. FRB emission characteristics favour highly magnetized neutron stars, or magnetars, as the sources, as evidenced by FRB-like bursts from a galactic magnetar, and the star-forming nature of FRB host galaxies. However, the processes that produce FRB sources remain unknown.
View Article and Find Full Text PDFNature
November 2024
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
Evidence suggests that, when compact objects such as black holes and neutron stars form, they may receive a 'natal kick', during which the stellar remnant gains momentum. Observational evidence for neutron star kicks is substantial, yet is limited for black hole natal kicks, and some proposed black hole formation scenarios result in very small kicks. Here we report that the canonical black hole low-mass X-ray binary (LMXB) V404 Cygni is part of a wide hierarchical triple with a tertiary companion at least 3,500 astronomical units (AU) away from the inner binary.
View Article and Find Full Text PDFNature
September 2024
Department of Space, Earth and Environment, Chalmers University of Technology, Gothenburg, Sweden.
The transport of energy through convection is important during many stages of stellar evolution, and is best studied in our Sun or giant evolved stars. Features that are attributed to convection are found on the surface of massive red supergiant stars. Also for lower-mass evolved stars, indications of convection are found, but convective timescales and sizes remain poorly constrained.
View Article and Find Full Text PDFNature
August 2024
Department of Physics, Engineering & Astronomy, Stephen F. Austin State University, Nacogdoches, TX, USA.
Giant exoplanets orbiting close to their host stars are unlikely to have formed in their present configurations. These 'hot Jupiter' planets are instead thought to have migrated inward from beyond the ice line and several viable migration channels have been proposed, including eccentricity excitation through angular-momentum exchange with a third body followed by tidally driven orbital circularization. The discovery of the extremely eccentric (e = 0.
View Article and Find Full Text PDFPhys Rev Lett
June 2024
Institut de Física d'Altes Energies (IFAE), The Barcelona Institute of Science and Technology, UAB Campus, E-08193 Barcelona, Spain.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!