A spiking computational model for striatal cholinergic interneurons.

Brain Struct Funct

Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, 15260, USA.

Published: March 2023

Cholinergic interneurons in the striatum, also known as tonically active interneurons or TANs, are thought to have a strong effect on corticostriatal plasticity and on striatal activity and outputs, which in turn play a critical role in modulating downstream basal ganglia activity and movement. Striatal TANs can exhibit a variety of firing patterns and responses to synaptic inputs; furthermore, they have been found to display various surges and pauses in activity associated with sensory cues and reward delivery in learning as well as with motor tic production. To help explain the factors that contribute to TAN activity patterns and to provide a resource for future studies, we present a novel conductance-based computational model of a striatal TAN. We show that this model produces the various characteristic firing patterns observed in recordings of TANs. With a single baseline tuning associated with tonic firing, the model also captures a wide range of TAN behaviors found in previous experiments involving a variety of manipulations. In addition to demonstrating these results, we explain how various ionic currents in the model contribute to them. Finally, we use this model to explore the contributions of the acetylcholine released by TANs to the production of surges and pauses in TAN activity in response to strong excitatory inputs. These results provide predictions for future experimental testing that may help with efforts to advance our understanding of the role of TANs in reinforcement learning and in motor disorders such as Tourette's syndrome.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00429-022-02604-9DOI Listing

Publication Analysis

Top Keywords

computational model
8
model striatal
8
cholinergic interneurons
8
firing patterns
8
surges pauses
8
tan activity
8
model
6
tans
5
activity
5
spiking computational
4

Similar Publications

Deep Equilibrium Unfolding Learning for Noise Estimation and Removal in Optical Molecular Imaging.

Comput Med Imaging Graph

January 2025

CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; National Key Laboratory of Kidney Diseases, Beijing 100853, China. Electronic address:

In clinical optical molecular imaging, the need for real-time high frame rates and low excitation doses to ensure patient safety inherently increases susceptibility to detection noise. Faced with the challenge of image degradation caused by severe noise, image denoising is essential for mitigating the trade-off between acquisition cost and image quality. However, prevailing deep learning methods exhibit uncontrollable and suboptimal performance with limited interpretability, primarily due to neglecting underlying physical model and frequency information.

View Article and Find Full Text PDF

Feasibility of detecting non-small cell lung cancer using exhaled breath condensate metabolomics.

J Breath Res

January 2025

School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Rd, Qingdao, Shandong, 266003, CHINA.

Lung cancer is one of the most common malignancy in the world, and early detection of lung cancer remains a challenge. The exhaled breath condensate (EBC) from lung and trachea can be collected totally noninvasively. In this study, our aim is to identify differential metabolites between non-small cell lung cancer (NSCLC) and control EBC samples and discriminate NSCLC group from control group by orthogonal projections to latent structures-discriminant analysis (OPLS-DA) models.

View Article and Find Full Text PDF

Background: In Catalonia, infants <6 months old were eligible to receive nirsevimab, a novel monoclonal antibody against respiratory syncytial virus (RSV). We aimed to analyze nirsevimab's effectiveness in hospital-related outcomes of the seasonal cohort (born during the RSV epidemic from October to January 2024) and compared them with the catch-up cohort (born from April to September 2023).

Methods: Retrospective cohort study of all infants born between October 1, 2023, and January 21, 2024, according to their immunization with nirsevimab (immunized and nonimmunized).

View Article and Find Full Text PDF

Digital Frequency Customized Relieving Sound for Chronic Subjective Tinnitus Management: Prospective Controlled Study.

J Med Internet Res

January 2025

ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.

Background: Tinnitus is a major health issue, but currently no tinnitus elimination treatments exist for chronic subjective tinnitus. Acoustic therapy, especially personalized acoustic therapy, plays an increasingly important role in tinnitus treatment. With the application of smartphones, personalized acoustic stimulation combined with smartphone apps will be more conducive to the individualized treatment and management of patients with tinnitus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!