Past research in computational systems biology has focused more on the development and applications of advanced statistical and numerical optimization techniques and much less on understanding the geometry of the biological space. By representing biological entities as points in a low dimensional Euclidean space, state-of-the-art methods for drug-target interaction (DTI) prediction implicitly assume the flat geometry of the biological space. In contrast, recent theoretical studies suggest that biological systems exhibit tree-like topology with a high degree of clustering. As a consequence, embedding a biological system in a flat space leads to distortion of distances between biological objects. Here, we present a novel matrix factorization methodology for drug-target interaction prediction that uses hyperbolic space as the latent biological space. When benchmarked against classical, Euclidean methods, hyperbolic matrix factorization exhibits superior accuracy while lowering embedding dimension by an order of magnitude. We see this as additional evidence that the hyperbolic geometry underpins large biological networks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9849222 | PMC |
http://dx.doi.org/10.1038/s41598-023-27995-5 | DOI Listing |
Front Immunol
January 2025
Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing, China.
Background: Hepatocellular carcinoma (HCC) is a common malignant tumor of the digestive system with a high incidence that seriously threatens patients' lives and health. However, with the rise and application of new treatments, such as immunotherapy, there are still some restrictions in the treatment and diagnosis of HCC, and the therapeutic effects on patients are not ideal.
Methods: Two single-cell RNA sequencing (scRNA-seq) datasets from HCC patients, encompassing 25,189 cells, were analyzed in the study.
J Headache Pain
January 2025
Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
Background: Migraine is a complex neurological disorder characterized by recurrent episodes of severe headaches. Although genetic factors have been implicated, the precise molecular mechanisms, particularly gene expression patterns in migraine-associated brain regions, remain unclear. This study applies machine learning techniques to explore region-specific gene expression profiles and identify critical gene programs and transcription factors linked to migraine pathogenesis.
View Article and Find Full Text PDFSci Rep
January 2025
Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran.
In this study, the contamination, ecological and human health risks as well as source apportionment of As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn, and V in street dusts of different land-uses in Kermanshah, Iran were investigated. A total of 192 dust samples were taken from 16 sites and were analyzed for their elemental contents using ICP-OES. The computed mean values for the geo-accumulation index (I-geo) and the pollution index (PI) ranged from - 6.
View Article and Find Full Text PDFSci Rep
January 2025
Fischell Department of Bioengineering, University of Maryland, College Park, USA.
The development of optical sensors for label-free quantification of cell parameters has numerous uses in the biomedical arena. However, using current optical probes requires the laborious collection of sufficiently large datasets that can be used to calibrate optical probe signals to true metabolite concentrations. Further, most practitioners find it difficult to confidently adapt black box chemometric models that are difficult to troubleshoot in high-stakes applications such as biopharmaceutical manufacturing.
View Article and Find Full Text PDFEnviron Pollut
January 2025
College of Meteorology and Oceanography, National University of Defense Technology, Changsha, 410073, China.
Understanding the composition of mercury (Hg) in the atmosphere is important for confirming its sources and to preventing and reduce the production. To explore the morphological distribution characteristics of wet Hg concentrations in Xi'an Shaanxi Province, China, total Hg (THg), dissolved Hg (DTHg), reactive Hg (RTHg) and particulate-bound Hg (PTHg) (Hg insoluble in water) were measured at 72 precipitation in Xi'an from September 2020 to July 2022, and their average concentrations were 3.035 ± 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!