Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The UAG-based genetic code expansion (GCE) enables site-specific incorporation of noncanonical amino acids (ncAAs) harboring novel chemical functionalities in specific target proteins. However, most GCE studies were done in several whole-genome engineered chassis cells whose hundreds of UAG stop codons were systematically edited to UAA to avoid readthrough in protein synthesis in the presence of GCE. The huge workload of removing all UAG limited the application of GCE in other microbial cell factories (MCF) such as , which has 607 genes ended with UAG among its 4245 coding genes. Although the 257 essential genes count only 6.1% of the genes in , they transcribe 12.2% of the mRNAs and express 52.1% of the proteins under the exponential phase. Here, we engineered a strain named Bs-22 in which all 22 engineerable UAG stop codons in essential genes were edited to UAA via CRISPR/Cas9-mediated multiple-site engineering to minimize the negative effect of GCE on the expression of essential genes. Besides the process of constructing GCE-compatible was systematically optimized. Compared with wild-type (Bs-WT), the fluorescence signal of the eGFP expression could enhance 2.25-fold in Bs-22, and the production of protein tsPurple containing l-(7-hydroxycoumarin-4-yl) ethylglycine (Cou) was increased 2.31-fold in Bs-22. We verified that all purified tsPurple proteins from Bs-22 contained Cou, indicating the excellent fidelity of the strategy. This proof-of-concept study reported efficient overexpression of ncAA-rich proteins in MCF with minimized engineering, shedding new light on solving the trade-off between efficiency and workload.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssynbio.2c00604 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!