The STX1B gene encodes the presynaptic protein syntaxin-1B, which plays a major role in regulating fusion of synaptic vesicles. Mutations in STX1B are known to cause epilepsy syndromes, such as genetic epilepsies with febrile seizures plus (GEFS+). Here, we reprogrammed skin fibroblasts from a female patient affected by GEFS+ to human induced pluripotent stem cells (iPSCs). The patient carries an InDel mutation (c.133_134insGGATGTGCATTG; p.Lys45delinsArgMetCysIleGlu and c.135_136AC > GA; p.Leu46Met), located in the regulatory H-domain of STX1B. Successful reprogramming of cells was confirmed by a normal karyotype, expression of several pluripotency markers and the potential to differentiate into all three germ layers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scr.2023.103028DOI Listing

Publication Analysis

Top Keywords

induced pluripotent
8
pluripotent stem
8
patient gefs+
8
generation induced
4
stem cell
4
cell ipsc
4
ipsc patient
4
gefs+ carrying
4
stx1b
4
carrying stx1b
4

Similar Publications

Mouse embryonic fibroblasts (MEFs) have been widely used as feeder cells in embryonic stem cell cultures because they can mimic the embryonic microenvironment. Milk fat globule-epidermal growth factor 8 (MFGE8) is expressed during mouse gonadal development, 10.5-13.

View Article and Find Full Text PDF

Aims: Alexander disease (AxD) is a leukodystrophy caused by mutations in the astrocytic filament gene GFAP. There are currently no effective treatments for AxD. Previous studies have rarely established AxD models with the patient's original GFAP mutations.

View Article and Find Full Text PDF

Background And Aims: Metabolic Dysfunction Associated Steatotic Liver Disease (MASLD) is reversible at early stages, making early identification of high-risk individuals clinically valuable. Previously, we demonstrated that patient-derived induced pluripotent stem cells (iPSCs) harboring MASLD DNA risk variants exhibit greater oleate-induced intracellular lipid accumulation than those without these variants. This study aimed to develop an iPSC-based MASLD risk predictor using functional lipid accumulation assessments.

View Article and Find Full Text PDF

Background: Deficiency in the lysosomal enzyme, glucocerebrosidase (GCase), caused by mutations in the GBA1 gene, is the most common genetic risk factor for Parkinson's disease (PD). However, the consequence of reduced enzyme activity within neural cell sub-types remains ambiguous. Thus, the purpose of this study was to define the effect of GCase deficiency specifically in human astrocytes and test their non-cell autonomous influence upon dopaminergic neurons in a midbrain organoid model of PD.

View Article and Find Full Text PDF

Gene syntax-the order and arrangement of genes and their regulatory elements-shapes the dynamic coordination of both natural and synthetic gene circuits. Transcription at one locus profoundly impacts the transcription of nearby adjacent genes, but the molecular basis of this effect remains poorly understood. Here, using integrated reporter circuits in human cells, we show that supercoiling-mediated feedback regulates expression of adjacent genes in a syntax-specific manner.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!