Increasing the Efficiency of Photocatalytic Water Splitting via Introducing Intermediate Bands.

J Phys Chem Lett

Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui230026, China.

Published: January 2023

Photocatalytic water splitting is a potential way to utilize solar energy. To be practically useful, it is important to have a high solar-to-hydrogen (STH) efficiency. In this study, we propose a conceptually new photocatalytic water splitting model based on intermediate bands (IBs). In this new model, introducing IBs within the band gap can significantly increase the STH efficiency limit (from 30.7% to 48.1% without an overpotential and from 13.4% to 36.2% with overpotentials) compared to that in conventional single-band gap photocatalytic water splitting. First-principles calculations indicate that N-doped TiO, Bi-doped TiO, and P-doped ZnO have suitable IBs that can be used to construct IB photocatalytic water splitting systems. The STH efficiency limits of these three doped systems are 10.0%, 12.0%, and 19.0%, respectively, while those of pristine TiO and ZnO without IB are only 0.9% and 1.6%, respectively. The IB photocatalytic water splitting model proposed in this study opens a new avenue for photocatalytic water splitting design.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.2c03221DOI Listing

Publication Analysis

Top Keywords

photocatalytic water
28
water splitting
28
sth efficiency
12
intermediate bands
8
splitting model
8
photocatalytic
7
water
7
splitting
7
increasing efficiency
4
efficiency photocatalytic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!