Parkinson's disease (PD) is the second most prevalent neurodegenerative disease of the central nervous system, with an estimated 5,000,000 cases worldwide. PD pathology is characterized by the accumulation of misfolded α-synuclein, which is thought to play a critical role in the pathogenesis of the disease. Animal models of PD suggest that activation of Abelson tyrosine kinase (c-Abl) plays an essential role in the initiation and progression of α-synuclein pathology and initiates processes leading to degeneration of dopaminergic and nondopaminergic neurons. Given the potential role of c-Abl in PD, a c-Abl inhibitor library was developed to identify orally bioavailable c-Abl inhibitors capable of crossing the blood-brain barrier based on predefined characteristics, leading to the discovery of IkT-148009. IkT-148009, a brain-penetrant c-Abl inhibitor with a favorable toxicology profile, was analyzed for therapeutic potential in animal models of slowly progressive, α-synuclein-dependent PD. In mouse models of both inherited and sporadic PD, IkT-148009 suppressed c-Abl activation to baseline and substantially protected dopaminergic neurons from degeneration when administered therapeutically by once daily oral gavage beginning 4 weeks after disease initiation. Recovery of motor function in PD mice occurred within 8 weeks of initiating treatment concomitantly with a reduction in α-synuclein pathology in the mouse brain. These findings suggest that IkT-148009 may have potential as a disease-modifying therapy in PD.

Download full-text PDF

Source
http://dx.doi.org/10.1126/scitranslmed.abp9352DOI Listing

Publication Analysis

Top Keywords

c-abl inhibitor
12
mouse models
8
parkinson's disease
8
animal models
8
α-synuclein pathology
8
c-abl
7
ikt-148009
5
disease
5
inhibitor ikt-148009
4
ikt-148009 suppresses
4

Similar Publications

Ependymoma (EPN) is a common form of brain tumor in children, often resistant to available cytotoxic therapies. Molecular profiling studies have led to a better understanding of EPN subtypes and revealed a critical role of oncogenes ZFTA-RELA fusion and EPHB2 in supratentorial ependymoma (ST-EPN). However, the immune system's role in tumor progression and response to therapy remains poorly understood.

View Article and Find Full Text PDF

Despite the study of BCR::ABL1-positive and -negative myeloproliferative neoplasms (MPNs) providing seminal insights into cancer biology, tumor evolution and precision oncology over the past half century, significant challenges remain. MPNs are clonal hematopoietic stem cell-derived neoplasms with heterogenous clinical phenotypes and a clonal architecture which impacts the often-complex underlying genetics and microenvironment. The major driving molecular abnormalities have been well characterized, but debate on their role as disease-initiating molecular lesions continues.

View Article and Find Full Text PDF

Background: Oxidative stress is strongly linked to neurodegeneration through the activation of c-Abl kinase, which arrests α-synuclein proteolysis by interacting with parkin interacting substrate (PARIS) and aminoacyl tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2). This activation, triggered by ataxia-telangiectasia mutated (ATM) kinase, leads to dopaminergic neuron loss and α-synuclein aggregation, a critical pathophysiological aspect of Parkinson's disease (PD). To halt PD progression, pharmacological inhibition of c-Abl kinase is essential.

View Article and Find Full Text PDF

Vodobatinib overcomes cancer multidrug resistance by attenuating the drug efflux function of ABCB1 and ABCG2.

Eur J Pharmacol

February 2025

Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, 10507, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan; Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan. Electronic address:

Multidrug resistance (MDR) remains a significant obstacle in cancer treatment, primarily attributable to the overexpression of ATP-binding cassette (ABC) transporters such as ABCB1 and ABCG2 within cancer cells. These transporters actively diminish the effectiveness of cytotoxic drugs by facilitating ATP hydrolysis-dependent drug efflux, thereby reducing intracellular drug accumulation. Given the absence of approved treatments for multidrug-resistant cancers and the established benefits of combining tyrosine kinase inhibitors (TKIs) with conventional anticancer drugs, we investigate the potential of vodobatinib, a potent c-Abl TKI presently in clinical trials, to restore sensitivity to chemotherapeutic agents in multidrug-resistant cancer cells overexpressing ABCB1 and ABCG2.

View Article and Find Full Text PDF
Article Synopsis
  • Mirror-image proteins made from D-amino acids are promising for therapy due to their stability and minimal immune reactions.
  • Development involves creating D-target proteins, selecting L-binders via phage display, and synthesizing D-binders that interact with the natural L-targets.
  • The study focuses on D-monobodies with strong binding to the D-SH2 domain of the BCR::ABL1 kinase, showing potential for therapeutic applications by inhibiting its activity and functioning well in biological settings.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!