Multinucleate cells of divide usually by unilateral cleavage furrows that ingress from the cell border. Along their path into the cell, they follow regions that are rich in myosin II and cortexillin and leave out the areas around the spindle poles that are populated with microtubule asters. In cells of a mutant that remain spread during mitosis we observed, as a rare event, cleavage by the expansion of a hole that is initiated in the middle of the cell area and has no connection with the cell's periphery. Here we show that these ring-shaped furrows develop in two phases, the first being reversible. During the first phase, the dorsal and ventral cell cortices come in close apposition and the cell membrane detaches locally from the substrate surface. The second phase comprises formation of the hole by membrane fusion and expansion of the opening toward the border of the cell, eventually cutting the multinucleate cell into pieces. We address the three-dimensional organization of ring-shaped furrows, their interaction with lateral furrows, and their association with filamentous myosin II and cortexillin. Thus, despite their geometrical divergence, similar molecular mechanisms might link the expanding hole to the standard contractile ring.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10092652 | PMC |
http://dx.doi.org/10.1091/mbc.E22-10-0487 | DOI Listing |
bioRxiv
October 2024
Institute of Molecular Biology, Department of Chemistry and Biochemistry, 1229 University of Oregon, Eugene, OR 97403.
After the first furrowing step of animal cell division, the nascent sibling cells remain connected by a thin intercellular bridge (ICB). In isolated cells nascent siblings migrate away from each other to generate tension and constrict the ICB, but less is known about how cells complete cytokinesis when constrained within tissues. We examined the ICBs formed by larval brain neural stem cell (NSC) asymmetric divisions and find that they rely on constriction focused at the central midbody region rather than the flanking arms of isolated cell ICBs.
View Article and Find Full Text PDFNat Commun
November 2024
Department of Biomedical Engineering, Yale University, 10 Hillhouse Avenue, New Haven, CT, USA.
The spatial and temporal dynamics of forces in cells coordinate essential behaviors like division, polarization, and migration. While intracellular signaling initiates contractile ring assembly during cell division, how mechanical forces coordinate division and their energetic costs remain unclear. Here, we develop an in vitro model where myosin-induced stress drives division-like shape changes in giant unilamellar vesicles (GUVs, liposomes).
View Article and Find Full Text PDFPLoS One
October 2024
School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom.
Promastigote Leishmania mexicana have a complex cell division cycle characterised by the ordered replication of several single-copy organelles, a prolonged S phase and rapid G2 and cytokinesis phases, accompanied by cell cycle stage-associated morphological changes. Here we exploit these morphological changes to develop a high-throughput and semi-automated imaging flow cytometry (IFC) pipeline to analyse the cell cycle in live L. mexicana.
View Article and Find Full Text PDFAt anaphase, spindle microtubules (MTs) position the cleavage furrow and trigger actomyosin assembly by localizing the small GTPase RhoA and the scaffolding protein anillin to a narrow band along the equatorial cortex [1-6]. Using vertebrate somatic cells we examined the temporal control of furrow assembly. Although its positioning commences at anaphase onset, furrow maturation is not complete until ∼10-11 min later.
View Article and Find Full Text PDFJ Cell Biochem
September 2024
Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India.
Septins are a class of proteins with diverse and vital roles in cell biology. Structurally, they form hetero-oligomeric complexes and assemble into filaments, contributing to the organization of cells. These filaments act as scaffolds, aiding in processes like membrane remodeling, cytokinesis, and cell motility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!