Au-FeO multifunctional nanoparticles (NPs) were synthesized and integrated with lateral flow immunoassay (LFIA) for dual-mode detection of Salmonella typhimurium. The Au-FeO NPs not only combined excellent local surface plasmon resonance characteristics and superparamagnetic properties, but also exhibited good photothermal effect. In the detection, antibody-conjugated Au-FeO NPs first captured S. typhimurium from complex matrix, which was then loaded on the LFIA strip and trapped by the T-line. By observing the color bands with the naked eyes, qualitative detection was performed free of instrument. By measuring the photothermal signal, quantification was achieved with a portable infrared thermal camera. The introduction of magnetic separation achieved the enrichment and purification of target bacteria, thus enhancing the detection sensitivity and reducing interference. This dual-mode LFIA achieved a visual detection limit of 5 × 10 CFU/mL and a photothermal detection limit of 5 × 10 CFU/mL. Compared with traditional Au-based LFIA, this dual-mode LFIA increased the detection sensitivity by 2 orders of magnitude and could be directly applied to unprocessed milk sample. Besides, this dual-mode LFIA showed good reproducibility and specificity. The intra-assay and inter-assay variation coefficients were 3.0% and 7.9%, and with this dual-mode LFIA, other bacteria hardly produced distinguishable signals. Thus, the Au-FeO NPs-based LFIA has potential to increase the efficiency of pandemic prevention and control. Au-FeO nanoparticle proved to be a promising alternative reporter for LFIA, achieving multifunctions: target purification, target enrichment, visual qualitation, and instrumental quantification, which improved the limitations of traditional LFIA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9847459 | PMC |
http://dx.doi.org/10.1007/s00604-023-05645-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!