Mistuned NF-κB signaling in lymphocytes: lessons from relevant inborn errors of immunity.

Clin Exp Immunol

Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.

Published: April 2023

Inborn errors of immunity (IEIs) continuously remind us that multiple checks and balances are built into the adaptive immune system to maintain homeostasis, ensuring effective pathogen defense without causing inadvertent immunopathology, autoimmunity, or lymphomagenesis. The nuclear factor of κB (NF-κB) family of transcription factors serve a vital role in the immune system, inducing scores of genes responsible for lymphocyte survival, proliferation, differentiation and effector function. In recent years, the discovery and characterization of IEIs that impact NF-κB activity have illuminated the importance of carefully tuning this pathway to ensure effective immune defense without hyperinflammation and immune dysregulation. Here we examine several illustrative cases of IEIs that arise from pathogenic mutations encoding NF-κB inducers, regulators, and NF-κB family components themselves, illuminating how these genes ensure normal adaptive immune system function by maintaining a "Goldilocks effect" state in NF-κB pathway activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10128170PMC
http://dx.doi.org/10.1093/cei/uxad006DOI Listing

Publication Analysis

Top Keywords

immune system
12
inborn errors
8
errors immunity
8
adaptive immune
8
nf-κb family
8
immune
5
nf-κb
5
mistuned nf-κb
4
nf-κb signaling
4
signaling lymphocytes
4

Similar Publications

Introduction: Patients with chronic inflammatory diseases are often treated with pharmacologic therapies that target the immune system and have an increased risk of infection. These risks can be reduced by vaccination against common pathogens. This quality improvement project aimed to increase pneumococcal and herpes zoster vaccination rates in patients with chronic inflammatory disease on biologic immunosuppressive therapy.

View Article and Find Full Text PDF

Single-cell and spatial transcriptomics illuminate bat immunity and barrier tissue evolution.

Mol Biol Evol

January 2025

Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.

Bats have adapted to pathogens through diverse mechanisms, including increased resistance - rapid pathogen elimination, and tolerance - limiting tissue damage following infection. In the Egyptian fruit bat (an important model in comparative immunology) several mechanisms conferring disease tolerance were discovered, but mechanisms underpinning resistance remain poorly understood. Previous studies on other species suggested that elevated basal expression of innate immune genes may lead to increased resistance to infection.

View Article and Find Full Text PDF

Evaluation of variations in predominant gut microbiota members in inflammatory bowel disease using real-time PCR.

Mol Biol Rep

January 2025

Department of Internal Medicine, Faculty of Medicine, Urmia University of Medical Sciences, Imam Khomeini Hospital, Urmia, Iran.

Inflammatory Bowel Disease (IBD) is a persistent ailment that impacts many individuals worldwide. The interaction between the immune system and gut microbiome is thought to influence IBD development. This study aimed to assess some microbiota in IBD patients compared to healthy individuals.

View Article and Find Full Text PDF

Role of polyamines in intestinal mucosal barrier function.

Semin Immunopathol

January 2025

Dairy Science and Technology Institute, Kyodo Milk Industry Co. Ltd, 20-1 Hirai, Hinode-Machi, Nishitama-Gun, Tokyo, 190-0182, Japan.

The intestinal epithelium is a rapidly self-renewing tissue; the rapid turnover prevents the invasion of pathogens and harmful components from the intestinal lumen, preventing inflammation and infectious diseases. Intestinal epithelial barrier function depends on the epithelial cell proliferation and junctions, as well as the state of the immune system in the lamina propria. Polyamines, particularly putrescine, spermidine, and spermine, are essential for many cell functions and play a crucial role in mammalian cellular homeostasis, such as that of cell growth, proliferation, differentiation, and maintenance, through multiple biological processes, including translation, transcription, and autophagy.

View Article and Find Full Text PDF

Aging is an inevitable physiological process in organisms, and the development of tumors is closely associated with cellular senescence. This article initially examines the role of cellular senescence in tumorigenesis, emphasizing the correlation between telomere length-a marker of cellular senescence-and tumor risk. Concurrently, the study explores the expression levels of senescence-associated markers, such as p16, p53, and mTOR, in the context of tumor development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!