Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Two-dimensional (2D) nanofluidic membranes have shown great promise in harvesting osmotic energy from the salinity difference between seawater and fresh water. However, the output power densities are strongly hampered by insufficient membrane permselectivity. Herein, we demonstrate that vacancy engineering is an effective strategy to enhance the permselectivity of 2D nanofluidic membranes to achieve high-efficiency osmotic energy generation. Phosphorus vacancies were facilely created on NbOPO (NbP) nanosheets, which remarkably enlarged their negative surface charge. As verified by both experimental and theoretical investigations, the vacancy-introduced NbP (V-NbP) exhibited fast transmembrane ion migration and high ionic selectivity originating from the improved electrostatic affinity of cations. When applied in a natural river water|seawater osmotic power generator, the macroscopic-scale V-NbP membrane delivered a record-high power density of 10.7 W m, far exceeding the commercial benchmark of 5.0 W m. This work endows the remarkable potential of vacancy engineering for 2D materials in nanofluidic energy devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.2c12936 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!