Hypoxia, as a main feature of the tumor microenvironment, has greatly limited the efficacy of photodynamic therapy (PDT), as well as its clinical application. Here, a multifunctional composite nanoplatform, the peptide/Ce6/MnO nanocomposite (), has been constructed to alleviate tumor hypoxia and increase the efficacy of PDT using rationally designed peptide fibrils to encapsulate chlorin e6 (Ce6) inside and to mineralize MnO nanoparticles on the surface. As a result, significantly improved the PDT efficacy by increasing reactive oxygen species (ROS) generation, decreasing tumor cell viability, and inhibiting tumor growth and metastasis. Besides, decreased HIF-1α expression and increased immune-activated cell infiltration were also observed in /laser treatment xenograft. Mechanically, (1) Ce6 can induce singlet oxygen (O) generation under laser irradiation to give photodynamic therapy (PDT); (2) MnO can react with HO in situ to supply additional O to alleviate tumor hypoxia; and (3) the released Mn ions can induce a Fenton-like reaction to generate OH for chemical dynamic therapy (CDT). Moreover, /laser treatment also presented with an abscopal effect to block the occurrence of lung metastasis by remolding the pre-metastasis immune microenvironment. With these several aspects working together, the peptide/Ce6/MnO nanoplatform can achieve highly efficient tumor therapy. Such a strategy based on peptide self-assembly provides a promising way to rationally design a cancer-responsive multifunctional nanoplatform for highly efficient combined cancer therapy by alleviating hypoxia and improving the immune microenvironment.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c20388DOI Listing

Publication Analysis

Top Keywords

highly efficient
12
cancer-responsive multifunctional
8
multifunctional nanoplatform
8
based peptide
8
peptide self-assembly
8
efficient combined
8
combined cancer
8
cancer therapy
8
therapy alleviating
8
alleviating hypoxia
8

Similar Publications

Seroprevalence of peste des petits ruminants in sheep and goats managed under pastoral and agro-pastoral systems.

J Infect Dev Ctries

December 2024

SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One Health, Sokoine University of Agriculture (SUA), P.O. Box 3297 Chuo Kikuu, Morogoro, Tanzania.

Introduction: Peste des petits ruminants (PPR) is an infectious disease that imposes substantial economic burdens on small ruminants (SR) production. For Tanzania to develop efficient management and eradication plans, it is essential to comprehend the seroprevalence of PPR designated for global elimination by 2030.

Methodology: This study investigated the prevalence of PPR in animals kept under pastoral and agropastoral communities in Tanzania.

View Article and Find Full Text PDF

Highly salt-resistant and efficient dynamic Janus absorber based on thermo-responsive hydroxypropyl cellulose.

Mater Horiz

January 2025

School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.

Recent advances in interfacial solar steam generation have made direct solar desalination a promising approach for providing cost-effective and environmentally friendly clean water solutions. However, developing highly effective, salt-resistant solar absorbers for long-term desalination at high efficiencies and evaporation rates remains a significant challenge. We present a Janus hydrogel-based absorber featuring a surface modified with thermo-responsive hydroxypropyl cellulose (HPC) and a hydrogel matrix containing photothermal conversion units, MXene, specifically designed for long-term seawater desalination.

View Article and Find Full Text PDF

The quinazoline scaffold serves as a fundamental framework, demonstrating potent anti-tumor activity. Employing the pharmacophore-based scaffold hopping principle, we successfully synthesized a series of FAK/PLK1 inhibitors incorporating the quinazoline scaffold. The synthesized compounds were characterized using H NMR, C NMR, and HRMS techniques.

View Article and Find Full Text PDF

The development and generation of affordable and highly efficient energy, particularly hydrogen, are one of the best approaches to address the challenges posed by the depletion of non-renewable energy sources. Hydrogen energy, as a green and ecosystem-friendly source with zero carbon emission, can be generated through various methods, including water splitting (HER/OER) either photo- or electrocatalytic reactions. To implement these reactions effectively in practical applications, it is highly desirable to develop extremely efficient and cost-effective catalytic materials that are comparable to contemporary catalysts.

View Article and Find Full Text PDF

Three new manganese compounds on 5-(pyridin-2-yl)-3-phenyl-1,2,4-triazole (L) basis (HL)[MnBr]·HO (1), (HL)[MnCl] (2) and [MnLCl]·HO (3) have been synthesized and characterized in terms of their structure, photoluminescence (PL), and electroluminescence (EL) properties. Compounds 1 and 2 exhibit bright green luminescence ( ≈ 550 nm) with high quantum yields of 75.1 and 71.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!