Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Broad-spectrum drug screening is offered by many clinical laboratories to support investigation of possible drug exposures. The traditional broad-spectrum drug screen employed at our laboratory utilizes several different analytical platforms, thus requiring relatively high volumes of sample and a cumbersome workflow. Here we describe the development and validation of a consolidated broad-spectrum drug screen assay designed to qualitatively detect 127 compounds in urine (Ur) and serum/plasma (S/P) samples.
Methods: An LC-MS/MS method was developed using the Ultivo LC-MS/MS and designed to be qualitative with a 1-point calibration curve and 50% to 150% controls. Sample preparation included the addition of 122 internal standards (IS) followed by mixed-mode strong cation exchange solid-phase extraction and reverse-phase chromatographic separation on a biphenyl column.
Results: For the method described herein, ≥ 95% of analytes in urine and serum control samples had a CV of ≤20% for total imprecision. Accuracy testing included 46 external controls and demonstrated 99.9% accuracy. Method comparison studies to quantitative testing are discussed. The high level of coverage of the analytes with a stable isotope-labeled IS (SIL-IS) helped normalize for matrix effects when significant ion suppression (>25%) was present. Analyte stability in the matrix, the impact of potentially interfering compounds, and method ruggedness were demonstrated. Method limitations include limited detection of glucuronidated drugs and potential cross-contamination with samples at very high concentrations (>>100 × cutoff).
Conclusions: The broad-spectrum drug screen method developed here qualitatively detected 127 drugs and select metabolites. This method could be used to support investigations of possible drug exposures in a clinical setting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jalm/jfac105 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!