AI Article Synopsis

  • Stony corals exhibit a unique reproductive process where they may produce gametes from somatic tissue, challenging the typical separation of germline and somatic cells.
  • Researchers sequenced genomes from parent coral branches and their sperm pools, revealing a significant number of post-embryonic single nucleotide variants (SNVs) that were unique to either the parent branches or the sperm.
  • The findings suggest that self-renewing stem cells in corals contribute to both germ and somatic cells throughout the colony’s life, highlighting potential insights into coral adaptation and evolution in response to climate change.

Article Abstract

In many animals, the germline differentiates early in embryogenesis, so only mutations that accumulate in germ cells are inherited by offspring. Exceptions to this developmental process may indicate other mechanisms have evolved to limit the effects of deleterious mutation accumulation. Stony corals are animals that can live for hundreds of years and have been thought to produce gametes from somatic tissue. To clarify conflicting evidence about germline-soma distinction in corals, we sequenced high coverage, full genomes with technical replicates for parent coral branches and their sperm pools. We identified post-embryonic single nucleotide variants (SNVs) unique to each parent branch, then checked if each SNV was shared by the respective sperm pool. Twenty-six per cent of post-embryonic SNVs were shared by the sperm and 74% were not. We also identified germline SNVs, those that were present in the sperm but not in the parent. These data suggest that self-renewing stem cells differentiate into germ and soma throughout the adult life of the colony, with SNV rates and patterns differing markedly in stem, soma and germ lineages. In addition to informing the evolution of germlines in metazoans, these insights inform how corals may generate adaptive diversity necessary in the face of global climate change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9846893PMC
http://dx.doi.org/10.1098/rspb.2022.1766DOI Listing

Publication Analysis

Top Keywords

sperm
5
mutations coral
4
coral soma
4
soma sperm
4
sperm imply
4
imply lifelong
4
lifelong stem
4
stem cell
4
cell renewal
4
renewal cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!