A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Extractive text summarization model based on advantage actor-critic and graph matrix methodology. | LitMetric

The automatic text summarization task faces great challenges. The main issue in the area is to identify the most informative segments in the input text. Establishing an effective evaluation mechanism has also been identified as a major challenge in the area. Currently, the mainstream solution is to use deep learning for training. However, a serious exposure bias in training prevents them from achieving better results. Therefore, this paper introduces an extractive text summarization model based on a graph matrix and advantage actor-critic (GA2C) method. The articles were pre-processed to generate a graph matrix. Based on the states provided by the graph matrix, the decision-making network made decisions and sent the results to the evaluation network for scoring. The evaluation network got the decision results of the decision-making network and then scored them. The decision-making network modified the probability of the action based on the scores of the evaluation network. Specifically, compared with the baseline reinforcement learning-based extractive summarization (Refresh) model, experimental results on the CNN/Daily Mail dataset showed that the GA2C model led on Rouge-1, Rouge-2 and Rouge-A by 0.70, 9.01 and 2.73, respectively. Moreover, we conducted multiple ablation experiments to verify the GA2C model from different perspectives. Different activation functions and evaluation networks were used in the GA2C model to obtain the best activation function and evaluation network. Two different reward functions (Set fixed reward value for accumulation (ADD), Rouge) and two different similarity matrices (cosine, Jaccard) were combined for the experiments.

Download full-text PDF

Source
http://dx.doi.org/10.3934/mbe.2023067DOI Listing

Publication Analysis

Top Keywords

graph matrix
16
evaluation network
16
text summarization
12
decision-making network
12
ga2c model
12
extractive text
8
summarization model
8
model based
8
advantage actor-critic
8
network
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!