Rapid diagnosis to test diseases, such as COVID-19, is a significant issue. It is a routine virus test in a reverse transcriptase-polymerase chain reaction. However, a test like this takes longer to complete because it follows the serial testing method, and there is a high chance of a false-negative ratio (FNR). Moreover, there arises a deficiency of R.T.-PCR test kits. Therefore, alternative procedures for a quick and accurate diagnosis of patients are urgently needed to deal with these pandemics. The infrared image is self-sufficient for detecting these diseases by measuring the temperature at the initial stage. C.T. scans and other pathological tests are valuable aspects of evaluating a patient with a suspected pandemic infection. However, a patient's radiological findings may not be identified initially. Therefore, we have included an Artificial Intelligence (A.I.) algorithm-based Machine Intelligence (MI) system in this proposal to combine C.T. scan findings with all other tests, symptoms, and history to quickly diagnose a patient with a positive symptom of current and future pandemic diseases. Initially, the system will collect information by an infrared camera of the patient's facial regions to measure temperature, keep it as a record, and complete further actions. We divided the face into eight classes and twelve regions for temperature measurement. A database named patient-info-mask is maintained. While collecting sample data, we incorporate a wireless network using a cloudlets server to make processing more accessible with minimal infrastructure. The system will use deep learning approaches. We propose convolution neural networks (CNN) to cross-verify the collected data. For better results, we incorporated tenfold cross-verification into the synthesis method. As a result, our new way of estimating became more accurate and efficient. We achieved 3.29% greater accuracy by incorporating the "decision tree level synthesis method" and "ten-folded-validation method". It proves the robustness of our proposed method.

Download full-text PDF

Source
http://dx.doi.org/10.3934/mbe.2023050DOI Listing

Publication Analysis

Top Keywords

infrared image
8
deep learning
8
system will
8
pandemic disease
4
disease detection
4
detection wireless
4
wireless communication
4
communication infrared
4
image based
4
based deep
4

Similar Publications

Atomic force microscopy-infrared spectroscopy (AFM-IR) is a photothermal scanning probe technique that combines nanoscale spatial resolution with the chemical analysis capability of mid-infrared spectroscopy. Using this hybrid technique, chemical identification down to the single molecule level has been demonstrated. However, the mechanism at the heart of AFM-IR, the transduction of local photothermal heating to cantilever deflection, is still not fully understood.

View Article and Find Full Text PDF

An Infrared and Visible Image Alignment Method Based on Gradient Distribution Properties and Scale-Invariant Features in Electric Power Scenes.

J Imaging

January 2025

State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China.

In grid intelligent inspection systems, automatic registration of infrared and visible light images in power scenes is a crucial research technology. Since there are obvious differences in key attributes between visible and infrared images, direct alignment is often difficult to achieve the expected results. To overcome the high difficulty of aligning infrared and visible light images, an image alignment method is proposed in this paper.

View Article and Find Full Text PDF

Motor imagery includes visual imagery and kinesthetic imagery, which are two strategies that exist for mental rotation and are currently widely studied. However, different mental rotation tests can lead to different strategic performances. There are also many research results where two different strategies appear simultaneously under the same task.

View Article and Find Full Text PDF

Tumor hypoxia significantly limits the effectiveness of radiotherapy, as oxygen is crucial for producing cancer-killing reactive oxygen species. To address this, we synthesized nanosized faujasite (PBS-Na-FAU) zeolite crystals using clinical-grade phosphate-buffered saline (PBS) as the solvent, ensuring preserved crystallinity, microporous volume, and colloidal stability. The zeolite nanocrystals showed enhanced safety profiles and , and studies showed no apparent toxicity to animals.

View Article and Find Full Text PDF

-β, β-β' trifused porphyrins incorporating two distinct active methylene groups (MN = malononitrile and IND = 1,3-indanedione) and their corresponding metal complexes with Cu(II) and Zn(II) have been synthesized with good to excellent yields and characterized by various spectroscopic techniques and spectrometric methods. Single crystal X-ray analysis of the Zn(II) complex ZnTFPMB(MN) (where TFP = trifused porphyrin and MB = mono benzo) revealed a nonplanar 'armchair' type conformation with a twist angle of 24.10°.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!