The rapid development of modern industrial technology has led to the increase of machinery precision. Laser tracking measurement systems represent a novel type of coordinate measurement method, which was developed on the basis of metrology. In this paper, we aim to define a single-station 3D coordinate rotating laser tracking measurement system based on the principle of the space coordinate method. In view of the current architecture and optical path of the system, we establish the ideal mathematical model of the system and derive the coordinate expression for arbitrary measured points in the measurement space. The output response of the photoelectric position detector to the rotating laser and the linearity of the position signal in the detection circuit have been detected via a concrete experiment. A laser tracking system was used to track the target mirror mounted on the coordinate measuring machine measuring spindle. It is shown that stable tracking is possible during the 3D movement of a cat's eye retroreflector if its velocity is 0.2 m/s and the distance to the moving object is 1-2 m. The corresponding velocity of the object must be 0.4 m/s. Our system provides a feasible implementation method for the tracking of the moving target space position.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3934/mbe.2023026 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Ultrasound, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400010, China.
: Photodynamic therapy (PDT) has emerged as a promising treatment for cancer, primarily due to its ability to generate reactive oxygen species (ROS) that directly induce tumor cell death. However, the hypoxic microenvironment commonly found within tumors poses a significant challenge by inhibiting ROS production. This study aims to investigate the effect of improving tumor hypoxia on enhancing PDT.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Mahasarakham University, Mahasarakham, 44150, Thailand.
Heat assisted magnetic recording (HAMR) technology is considered a solution to overcome the limitations of perpendicular magnetic recording and enable higher storage densities. To improve and understand the performance of magnetic writers in HAMR technology, it is crucial to possess a comprehensive understanding of both the magnetic field generated during the writing process and the thermal effects induced by the laser. In this work, we have developed a micromagnetic HAMR model with atomistic parameterization.
View Article and Find Full Text PDFAdv Drug Deliv Rev
January 2025
Light sheet fluorescence microscopy (LSFM) has emerged as a transformative imaging technique in the study of drug delivery and embryonic development, offering high-resolution, real-time visualization with minimal phototoxicity. This review examines the application of LSFM in tracking drug pharmacokinetics, tissue-specific targeting, and drug efficacy during critical phases of embryonic development. Recent advancements in fluorescent labeling and machine learning integration have enabled more precise monitoring of drug release, distribution, and interaction with developing tissues.
View Article and Find Full Text PDFNano Lett
January 2025
University Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France.
Thermal transport in nanostructures plays a critical role in modern technologies. As devices shrink, techniques that can measure thermal properties at nanometer and nanosecond scales are increasingly needed to capture transient, out-of-equilibrium phenomena. We present a novel pump-probe photon-electron method within a scanning transmission electron microscope (STEM) to map temperature dynamics with unprecedented spatial and temporal resolutions.
View Article and Find Full Text PDFMode-pairing quantum key distribution (MP-QKD) circumvents the need for phase locking through post-selection pairing, still allowing it to surpass the repeaterless rate-transmittance limit. This protocol, therefore, presents a promising approach for practical QKD implementation. Without phase locking and tracking, the performance of the laser, channel, and detector critically affects the determination of the maximum pairing length in pairing strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!